
 MATLAB Training Course ©CR Thomas 2010
 16/01/10 1 of 30

MATLAB Training Course

Tuesday 19th January 2010

Course Leaders:

Dr Phil Robbins p.t.robbins@bham.ac.uk x 47601
Professor Colin Thomas c.r.thomas@bham.ac.uk x 45355
School of Chemical Engineering

C&IT Contact:
Aslam Ghumra a.k.ghumra@bham.ac.uk x45877

Attendees:

Riadh Lebib School of Psychology
Lisa Bishop School of Biosciences
Johanna Gietl School of Geography, Earth and Environmental Sciences
Zeshu Shao School of Psychology
Andrew Southam School of Biosciences
Anja Woiciechowsky Division of Cancer Studies
Catherine Jex School of Geography, Earth and Environmental Sciences
Samuel Coward School of Biosciences
Jonathan Hunt IT Services
Ulf Sommer School of Biosciences

Contents:
 page

Learning Outcomes 2
Prerequisites 2
Syllabus and Schedule 2
Exercises 4
Example Solutions to Exercises 14
Appendix 1: Brief Guide to MATLAB 21
Appendix 2: Indexing and Loops 28

 MATLAB Training Course ©CR Thomas 2010
 16/01/10 2 of 30

Learning outcomes:

At the end of the Course, the students will be able to
(i) use MATLAB in the Command Window for simple tasks;
(ii) use the Workspace and Command History Windows effectively;
(iii) access Help;
(iv) write script m-files for more complicated tasks;
(v) handle vectors and matrices in MATLAB;
(vi) handle polynomials in MATLAB;
(vii) use loop structures, whilst understanding the advantages of vectorisation effectively;
(viii) write and use function m-files and user–defined functions, and use function
functions; and
(ix) solve simple systems of ode’s in MATLAB.

Pre-requisites:

Some knowledge of programming.
Understanding of vectors and matrices, polynomials and mathematical functions in
general.

Syllabus and schedule:

Morning Session (9:30 am to 12:30 pm):

Part 1: General (15 min)
Students will practise using the Command Widow to execute simple programming tasks,
taking advantage of the Workspace and Command History Windows as necessary, and
using the Help files. Built-in functions will be introduced and the students will practice
their use on scalars.

Part 2: Vectors and matrices (15 min)
Students will create vectors and matrices, and solve simple sets of linear equations in the
Command Window. The difference between array and matrix multiplication will be
considered. The way MATLAB handles polynomials will be described, with relevant
common functions discussed. The students will attempt simple programming exercises
based on these functions.

Part 3: Script or m-files (45 min)
Students will learn to use the MATLAB Editor to create and run m-files. Looping
structures in MATLAB and the advantages of vectorisation over loop structures in many
instances will be described, using built-in functions. The students will write simple m-
files to solve problems using these concepts and those of the previous section.

Break 10 min

 MATLAB Training Course ©CR Thomas 2010
 16/01/10 3 of 30

Part 4: Plotting (20 min)
Students will learn to use MATLAB’s 2D plotting capabilities, following a brief function
m-files and user–defined functions demonstration. There will be a brief introduction to
3D plotting.

Part 5: Programming tasks (1 h 15 min)
Students will have time to develop their MATLAB skills by undertaking more
programming tasks.

Afternoon Session (2 to 4:30 pm):

Part 6: Function m-files (30 min)
Students will learn to use function m-files, write user–defined functions, and function
functions, using them to solve appropriate problems.

Part 7: Ordinary differential equations (50 min)
The students will learn how to use MATLAB to solve simple systems of ODE's, with
mention of the various built in solvers. Students will write function m-files, write user–
defined functions, and function functions, using them to solve appropriate problems.

Break 10 min

Part 8: Consolidation exercises (1 h)

Books:
There are many books on MATLAB, some fairly specific e.g. for Engineers. For first
year Engineers we recommend:
Moore, H. (2007) MATLAB for Engineers. Pearson Prentice Hall.
Many people like:
Gilat, A. (2008) MATLAB: An Introduction with Applications. John Wiley and Sons

Examples are taken from these and other books e.g.
Etter, D. (1996) An Introduction to MATLAB for Engineers and Scientists Prentice Hall
Hahn, B.D. and Valentine, D.T. (2009) Essential MATLAB for Engineers and Scientists.
Butterworth-Heinemann
Gustafsson, F. and Bergman, N. (2003) MATLAB for Engineers Explained. Springer-
Verlag.

Check the MathWorks website www.mathworks.com for information on books, of a
general nature and by specific discipline) and other useful stuff. Amazon lists a lot of
popular MATLAB books too.

 MATLAB Training Course ©CR Thomas 2010
 16/01/10 4 of 30

Exercises:
Note: MATLAB commands are shown in bold below, so they are easy to see, but you
can just type them normally.

What you cannot complete in the time allotted you should attempt in the time set aside
for “Programming tasks” and “Consolidation exercises”.

There are example solutions to the exercises given later. They may not always be best
programming practice! Please send improvements to c.r.thomas@bham.ac.uk.

Part 1: General (15 min)
Demonstration (CRT): based on Appendix 1.

1. Mathematical operators in MATLAB are fairly obvious including ^ for “raise to
power”. The usual rules of operator precedence are followed. Try some simple
mathematical expressions. Also try some of MATLAB's built-in functions at the
Command Window e.g.
 >> sqrt(4)
 >> log(2)
 >> log10(10)
Note that MATAB uses log for natural logs (loge).
If you go to Help - Product Help in the MATALB menus you can find all the functions in
alphabetical order and by category. There is lots of help available. Help also includes
video tutorials and demos. We strongly recommend that you find some time, now or in
the next few weeks, to look at these.

2. Note that a semicolon (;) after a command suppresses the output, which is often useful
if you are writing a programme or your variable is very large.
Try
 >> A = magic(3)
and
 >> B = magic(4);

Even though B is not printed in the Command Window, it is available in memory (the
workspace) as can be seen in the Workspace Window.

3. You can clear the Command Window with the command
 >> clc
 This does not affect the variables stored in the workspace. Try it!

4. If you want to save your variables to disk for later use, use the save command e.g.
 >> save mydata
which creates a file called mydata.mat that you can load later. (Of course you can use any
legal filename instead of mydata.) If you use the command
 >> save mydata A –ascii
you can get a text file readable by Word and Excel.

 MATLAB Training Course ©CR Thomas 2010
 16/01/10 5 of 30

On the other hand, if you want to clear your functions and variables from memory
 >> clear
is what you need. Try it before you type too much, and have to start again!

5. By now you should have made some mistakes. If not, make one or more on purpose.
Notice how MATLAB gives useful information about errors of syntax, including its best
guess of where the mistake lies. In correcting mistakes in commands, the up and down
arrow keys ↑ ↓ are useful for stepping through previous commands. You can also use
the Command History Window to drag a previous command to the Command Widow for
editing, or you can double click on a command to run it again. Try out these operations;
they are incredibly useful.

Note that MATLAB does not recalculate previous commands e.g. if you change the value
of a variable. Thus (display condensed to save space):
 >> a =5;
 >> x = a^2
 x =
 25
 >> a =7;
 >> x
 x =
 25
 >> x = a^2
 x =
 49

6. MATLAB can handle strings (bits of text)
 >> greeting = 'Hello, world.'
String arrays are created using the single quote delimiter ' . A useful function is disp,
which allows you to display text on the screen without the variable name being repeated.
For example
 >> disp('Hello, world').
 Try your own messages.

7. A paper cup shaped as a frustum of a cone is designed to have a volume of 250 mL.
The radius of the top of the cup is 1.25 times the radius of the base. Determine the top
and bottom radii if the cup is 50 mm high.
Note:

where V is the volume, h is the cup height, R2 is the radius at the top, and R1 is the radius
at the bottom.
 (Ans.: 44.2 mm, 35.4 mm)
Adapted from Gilat

Useful function: sqrt

 MATLAB Training Course ©CR Thomas 2010
 16/01/10 6 of 30

8. Zeller’s Congruence (http://en.wikipedia.org/wiki/Zeller's_congruence) can be used to
compute the day of the week, given the date. For the Gregorian calendar, Zeller's
congruence is

where h is the day of the week (0 = Saturday, 1 = Sunday, 2 = Monday, ...), q is the day
of the month, m is the month (3 = March, 4 = April, 5 = May, ..., 14 = February), y the
year of the century (e.g. 95 for 1995), and c is the century number (e.g. in 1995 the
century would be 19, even though it was the 20th century.) The square brackets indicate
taking the integer part of the number enclosed.

Warning: January and February are counted as months 13 and 14 of the previous year, so,
for example, January 2000 would be the 13th month of 1999!

Test this on today’s date.

Useful functions: floor , mod

Part 2: Vectors and matrices (15 min)
MATLAB stands for MATrix LABoratory. It is built around matrices and their algebra.
Demonstration (CRT): based on Appendix 1.

9. Create row vectors a = [1 3 5 7 9] and b = [2 1.5 1 0.5 0] using the colon
 operator.

Create the matrix A =

011

120

201

.

 10. Try
 >> a*b
Why doesn't this work?
The transpose operator in MATLAB is a single quote ' .
Try
 >> b' and then
 >> a*b' (which actually gives the dot or scalar product of the vectors).

11. Matrix and array multiplication. Compare A*A, A^2, A.*A and A.^2.
The fullstop here signifies an element by element operation, rather than matrix
multiplication. This is often what you want in implementing scientific formulae.

12. Create some matrices using ones, zeros, eye, rand, randn to see how they work.
Check the meaning and syntax in the Help files. In each case use either 1 or 2 arguments.
Note how MATLAB interprets the meaning.

 MATLAB Training Course ©CR Thomas 2010
 16/01/10 7 of 30

Note that eye(size(A)) is very useful for creating an identity matrix the same size as A,
where A is a given matrix.

13. Try sum, sort, and max on A. Note these (and others) work on matrix columns.
How would you find the maximum value in a matrix?

14. Construct a square matrix of integers of size 7x7. Try something like
 >> A = round(10*rand(7))
Other possibilities instead of round are floor , ceil and fix .
What is the rank of A, and the value of its determinant? Try
 >> rank(A)
 >> det(A)
If the rank is not 7, make a new matrix A of rank 7 for exercise 15.

15. Create a column vector b of 7 rows. Try something like:
 >> b = [0:-1:-6]'.
Imagine your A matrix from exercise 14 contains the coefficients for 7 variables in 7
equations and b is the matrix of constants, so that Ax = b. Evaluate x using matrix
division (“left division”), and by finding the inverse of A with inv(A), and then finding
inv(A)*b. The answers may look identical, but they are not exactly because of truncation
errors during the calculations.

16. The reaction of copper sulphate and nitric acid in aqueous solution is described by
the following chemical equation:

where a to g are the numbers of molecules participating in the reaction and are unknown.
Balancing for each element gives:
 a = d
 a = e
 b = f
 3b = 4e + f + g
 c = 2 g
 -b + c = 2d - 2e
There are 7 unknowns a to g and 6 equations. However, a to g must be positive integers,
so a solution can be found. This is done by setting a = 1, solving the resulting matrix
equation and seeing if the solution is positive integers. If not, a is set to 2, and the
solution is repeated, and so on.

Find a to g with the lowest possible value of a. (Hint: arrange the equations in matrix
form, where the elements of the matrix are the appropriate coefficients of the unknowns.
The Array Editor is useful for creating this sort of array.)
 (Ans.: 3, 8, 8, 3, 3, 8, 4)
Adapted from Gilat.

Useful functions: zeros

 MATLAB Training Course ©CR Thomas 2010
 16/01/10 8 of 30

17. Vectorisation
MATLAB expressions and functions will often accept vectors and matrices as input
arguments. For example
 >> times = 0:0.1:1;
 >> temp = 5*times + 273.16
 temp =

 Columns 1 through 8
 273.1600 273.6600 274.1600 274.6600 275.1600 275.6600 276.1600 276.6600

 Columns 9 through 11
 277.1600 277.6600 278.1600

Using vectors in this way reduces the need for looping structures (although these are
available, see later) and can make code much faster.

Repeat Exercise 7 but use a vector of h values from 50 to 100 mm in steps of 10 mm.
Once you have defined the vector, you should be able to find the commands to calculate
the radii in your Command History. Try the command to calculate R1; you should see an
error message. Find out why this appears and correct the command so it works as you
wish. (Hint: consider Exercise 11.)

18. Polynomials
In MATLAB, polynomials are represented by a row vector of the coefficients e.g. a
polynomial f = 2x3 – 3x2 + x – 1 is specified by the coefficient vector
 >> a = [2 –3 1 –1]
If x = [1 –2], then polyval(a, x) = [–1 –31].
roots(a) gives the roots of the polynomial represented by the coefficient vector a.
poly(r) gives the coefficients of the polynomial with roots r.
There is a lot more to polynomials than this!

Find the roots of the polynomial f = 3x3 – 2x2 + x – 1.
(Ans.: 1.3982, 0.0509 + 0.5958i, 0.0509 - 0.5958i. Note that 2 roots are complex. i in
MATLAB is used for .)

Useful function: roots

Find the value of this polynomial at x = 2, 5, 13 and 14. Use vectorisation.
 (Ans.: 5, 179 , 3899, 4913)
Useful function: polyval

 MATLAB Training Course ©CR Thomas 2010
 16/01/10 9 of 30

Part 3: Script or m-files (45 min)
Many MATLAB operations and functions can be used at the command line (in the
Command Window). Commands can also be stored in text files to be executed later from
the command line. Such a file has an extension .m and is therefore called an m-file.
MATLAB has a built-in editor.
A “script” m-file is equivalent executing a sequence of commands at the command line.
You can store m. files for later use.
Demonstration (CRT). Also see Appendix 1.

%: anything on a line after % sign is a comment and will be ignored. You should
comment your code extensively so it is easily understood and maintained.

19. Write an m-file that will convert degrees Fahrenheit to degrees Centigrade and
produce a table like that below (on screen).
Note: ºC = (ºF – 32) × 5/9

 degrees C
deg F +0 +1 +2 +3 +4 +5 +6 +7 +8 +9
0 -17.78 -17.22 -16.67 -16.11 -15.56 -15.00 -14.44 -13.89 -13.33 -12.78
10 -12.22 -11.67 -11.11 -10.56 -10.00 -9.44 -8.89 -8.33 -7.78 -7.22
20 -6.67 -6.11 -5.56 -5.00 -4.44 -3.89 -3.33 -2.78 -2.22 -1.67
30 -1.11 -0.56 0.00 0.56 1.11 1.67 2.22 2.78 3.33 3.89
40 4.44 5.00 5.56 6.11 6.67 7.22 7.78 8.33 8.89 9.44
50 10.00 10.56 11.11 11.67 12.22 12.78 13.33 13.89 14.44 15.00
60 15.56 16.11 16.67 17.22 17.78 18.33 18.89 19.44 20.00 20.56
70 21.11 21.67 22.22 22.78 23.33 23.89 24.44 25.00 25.56 26.11
80 26.67 27.22 27.78 28.33 28.89 29.44 30.00 30.56 31.11 31.67
90 32.22 32.78 33.33 33.89 34.44 35.00 35.56 36.11 36.67 37.22
100 37.78 38.33 38.89 39.44 40.00 40.56 41.11 41.67 42.22 42.78
110 43.33 43.89 44.44 45.00 45.56 46.11 46.67 47.22 47.78 48.33
120 48.89 49.44 50.00 50.56 51.11 51.67 52.22 52.78 53.33 53.89
130 54.44 55.00 55.56 56.11 56.67 57.22 57.78 58.33 58.89 59.44
140 60.00 60.56 61.11 61.67 62.22 62.78 63.33 63.89 64.44 65.00
150 65.56 66.11 66.67 67.22 67.78 68.33 68.89 69.44 70.00 70.56
160 71.11 71.67 72.22 72.78 73.33 73.89 74.44 75.00 75.56 76.11
170 76.67 77.22 77.78 78.33 78.89 79.44 80.00 80.56 81.11 81.67
180 82.22 82.78 83.33 83.89 84.44 85.00 85.56 86.11 86.67 87.22
190 87.78 88.33 88.89 89.44 90.00 90.56 91.11 91.67 92.22 92.78
200 93.33 93.89 94.44 95.00 95.56 96.11 96.67 97.22 97.78 98.33
210 98.89 99.44 100.00 100.56 101.11 101.67 102.22 102.78 103.33 103.89

Useful functions: reshape, blanks, disp, fprintf

20. Loops:
Try out some simple flow control structures. if , for , while are most useful. See the Help
files and/or Program Flow Control in Appendix 1 and Appendix 2.

Write scripts to do the following. Create an array of numbers [1 2 3 ... 99 100]
Create an array of numbers [2 3 4 ... 100 101]
Create an array of numbers [1 2 3 ... 48 49 50 102 104 ... 196 198 200]
Create an array containing the squares of 1 to 10
Given the formula y = x2 + 2x + 1, calculate y for x = 1 2 3 ...8 9 10

 MATLAB Training Course ©CR Thomas 2010
 16/01/10 10 of 30

21. If you are feeling adventurous, write a program called hi_lo.m, which asks the user to
discover a random integer between 0 and 100 chosen by the computer. Only 7 guesses
are allowed. Use a for loop to execute the code for inputting and checking guesses up to
7 times (break will allow you to exit if a guess is successful). Use if .. elseif .. else for
checking hi, lo and correct.

Useful functions: input, int2str (note also num2str, double2str, str2double)

Part 4: Plotting (20 min)
MATLAB has excellent plotting capabilities, which give you a very good control over
your output.
Demonstration (CRT). Also see Appendix 1.

22. Plotting a single 2D curve in MATLAB:
If xdata and ydata contain corresponding pairs of data values, plot(xdata, ydata) will plot
the y values against the x values. Try plotting some sine or cosine curves. For example,
create a vector of x values from 0 to 2π, calculate a corresponding vector of y values,
where y = sin(x). Then try
 >> plot(x,y)
 Note that you could also do this by
 >> plot(x,sin(x))
but you don’t get the vector y to use later and the code is much harder to read.

Check out the options in Help. You should try to specify different styles and colours of
lines and markers. Messing on is recommended!

The command axis allows you to specify the axis ranges. Try it!

By default, plot deletes existing lines and resets all axes when a new plot command is
made. To add lines to an existing plot, use hold on. Don’t forget to turn hold off!

You can annotate graphs with title , xlabel, ylabel, text, plotedit. There is access to plot
editing tools from a button in the Figure Window.

Look at the plotting Demos (via Help) to get some ideas of what MATLAB can help you
do.

23. Look in the Help files under 3-D Visualization to see the large number of
possibilities here. Try a script file with these commands
 x = -3:0.25:3;
 y = -3:0.25:3;
 [X Y] = meshgrid(x,y);
 Z = X.^2 + Y.^2;
 mesh(X, Y, Z)
and then try meshc, contour and surf instead of mesh.

 MATLAB Training Course ©CR Thomas 2010
 16/01/10 11 of 30

Part 5: Programming tasks (1 h 20 min)
Complete all the Exercises you were not able to finish earlier. It might also be worth
working through Appendix 1 to become more familiar with the syntax. Here are some
additional exercises if you need them:

24. Use MATLAB to show that the sum of the infinite series converges to
π. Do this by using a loop to increase n in powers of 2 until the difference between the
sum of the series and MATLAB’s value of π differ by less than 1e-6. Plot the differences
as a function of n.

Adapted from Gilat.

Useful functions: abs, semilogx, xlabel, ylabel, title

25. If n is an integer > 1 then a sequence can be formed where the next number is 3n + 1
if n is odd and n/2 if n is even (the hailstorm series). It is an unproven conjecture that
whatever is the value of n, the sequence will always reach 1. Write a program to
compute the sequence given a user input of n. If n is not greater than 1, an error message
should be generated. Otherwise print the values to screen and show a plot of how the
series reaches 1 (if it does).

Adapted from Gustafsson and Bergman.

Useful functions: ceil, floor, rem, disp, plot

Part 6: Function m-files (30 min)
A function m-file is a script file that takes arguments (inputs and outputs). MATLAB
provides a lot of such files, and you can write your own.
Demonstration (CRT)

26. humps(x) is a function – it takes in values of x, and outputs values of y. Look at
how this function file is constructed by entering
 >> type humps
at the command line. Note in particular the structure of the first line:

function [out1,out2] = humps(x)

The word function identifies this as a function. Its name is humps, and it should be in an
m-file called by the same name i.e. humps.m. The input argument is x, and the output
arguments are out1 and out2 in a vector. The function must calculate or set values for all
the output arguments, usually based on the value of the input argument.

The comment lines that follow the first line are what appear if a user types

 MATLAB Training Course ©CR Thomas 2010
 16/01/10 12 of 30

>>help humps
at the command line:

%HUMPS A function used by QUADDEMO, ZERODEMO and FPLOTDEMO.
% Y = HUMPS(X) is a function with strong maxima near x = .3
% and x = .9.
%
% [X,Y] = HUMPS(X) also returns X. With no input arguments,
% HUMPS uses X = 0:.05:1.
%
% Example:
% plot(humps)
%
% See QUADDEMO, ZERODEMO and FPLOTDEMO.

This help describes what the function does, some points of syntax and often and example.

Try plotting humps as the help suggests. (The default x = 0 to 1 is a good range). Use
the editor to make your own version of humps (“myhumps”?) that has at least one root in
the range of x you are using. Store myhumps for later (Exercise 27). Plot myhumps on
top of humps.

27. Function functions:
There are some functions in MATLB which work on other functions. Try the
function functions fminbnd and quad on myhumps (Exercise 26).
 >> help funfun
gives general help, but you can use (for example)
 >> help fzero
and so on, as usual for specific help.
You usually have to pass a function to another function as a “handle” or as a string in
quotes e.g.
>> fminbnd (@humps,0,1)
ans =
 0.6370

28. User m-files:
Start the editor, and write a function m-file to implement the algorithm for determining a
square root, which says that if y is a guess of the square root of x, then a better guess is
the mean of y and x/y is a better guess. The syntax should be y = mysqrt(x, y0, tol) where
the iterations terminate when 2 successive guesses are closer than tol.

Note that all variables inside a function are “local”. This means that the bits of the
program outside the function don’t have access to the values of any variables other than
the arguments of the function (input, output variables). This means that you cannot
accidentally override the value of a variable in the Workspace. However, it does mean

 MATLAB Training Course ©CR Thomas 2010
 16/01/10 13 of 30

you should pass in all the variables you need as input arguments. If there are a lot,
consider a “structure”. See the Help files for more information.

Part 7: Ordinary differential equations (50 min)
Materials to be supplied separately.

Part 8: Consolidation exercises (1 h)
Complete the exercises you have not managed to finish and ask for more if you need
them.

 MATLAB Training Course ©CR Thomas 2010
 16/01/10 14 of 30

Example Solutions to Exercises:

Exercise 7:
>> V = 250*1E-6; % m^3
>> h = 0.05 ; % m
>> R1 = sqrt(3*V/pi/h/(1+1.25^2+1.25)) % m
R1 =
 0.0354
>> R2 = R1*1.25 % m
R2 =
 0.0442

(Ans.: 44.2 mm, 35.4 mm)

Exercise 8:
>> q = 19;
>> m = 13;
>> y = 9;
>> c = 20;
>> h = (q+floor(2.6*(m+1))+y+floor(y/4)+floor(c/4)-2*c);
>> h = mod(h,7)
h =
 3

(Ans: Tuesday)

Exercise 10: for matrix multiplication, the inner dimensions must agree.

Exercise 13: for matrix A,
 >> max(max(A))
will give the maximum element.

Exercise 16:
>> A = zeros(7);
A then produced in the Array Editor by changing individual value giving:
>> A
A =
 1 0 0 -1 0 0 0
 1 0 0 0 -1 0 0
 0 1 0 0 0 -1 0
 0 3 0 0 -4 -1 -1
 0 0 1 0 0 0 -2
 0 -1 1 -2 2 0 0
 1 0 0 0 0 0 0

 MATLAB Training Course ©CR Thomas 2010
 16/01/10 15 of 30

Condensed:

>> b = [0 0 0 0 0 0 1]’
% Notice transpose here.

>> a_to_g = A\b

b =
 0
 0
 0
 0
 0
 0
 1

a_to_g =
 1.0000
 2.6667
 2.6667
 1.0000
 1.0000
 2.6667
 1.3333

>> b(end) = 2 >> a_to_g = A\b

b =
 0
 0
 0
 0
 0
 0
 2

a_to_g =
 2.0000
 5.3333
 5.3333
 2.0000
 2.0000
 5.3333
 2.6667

>> b(end) = 3; >> a_to_g = A\b

 a_to_g =
 3.0000
 8.0000
 8.0000
 3.0000
 3.0000
 8.0000
 4.0000

 All integers as required.

Note: could have inferred the solution by looking at the first set of values for a to g.
However, it would also be possible to write code to give the desired solution.

Exercise 17:
>> h = (50:10:100)/1000;
>> R1 = sqrt(3*V/pi/h/(1+1.25^2+1.25))
??? Error using � mrdivide
Matrix dimensions must agree.
>> R1 = sqrt(3*V/pi./h/(1+1.25^2+1.25))
R1 =

 MATLAB Training Course ©CR Thomas 2010
 16/01/10 16 of 30

 0.0354 0.0323 0.0299 0.0280 0.0264 0.0250
>> R2 = R1*1.25
R2 =
 0.0442 0.0404 0.0374 0.0350 0.0330 0.0313

Exercise 18:
>> a = [2 -3 1 -1];
>> x = [2 5 13 14];
>> polyval(a,x)
ans =
 5 179 3899 4913

Exercise 19:
% This could really do with comments. As you work out what is going on here,
% why not comment the code yourself?
clc
deg_F = 0:219;
deg_C = (deg_F - 32)*5/9;
C_table = reshape(deg_C, 10, 22)’;
ext_C_table = [(0:21)’*10 C_table];
header_1 = [blanks(32) ‘degrees C’];
header_2 = [‘deg F ‘ ‘ +0’ blanks(5) ‘+1’ blanks(5) ‘+2’ ...
 blanks(5) ‘+3’ blanks(5) ‘+4’ blanks(5) ‘+5’ blanks(5) ‘+6’ ...
 blanks(5) ‘+7’ blanks(5) ‘+8’ blanks(5) ‘+9’];
disp(header_1)
disp(header_2)
fprintf(‘%-6.0f %6.2f %6.2f %6.2f %6.2f %6.2f %6.2f %6.2f %6.2f %6.2f %6.2f\n’,
ext_C_table’)

Exercise 20:
The “short answers” in the table below are deliberately as compact as possible – please
ask if they’re not clear. Some of them use "vectorisation" which is a powerful way in
MATLAB to speed up calculations and make the code shorter. Instead of dealing with
values of a variable one at a time (say in a loop), you can often feed a vector or matrix of
values into a function, and get out a corresponding vector or matrix of answers.

Q Long answer Short answer
1 for n = 1:100

 x(n) = n;
end
disp(x)

x = 1:100;

2 for n = 1:100
 x(n) = n+1;
end
disp(x)

x = 2:101;
or
x = [1:100] + 1;

 MATLAB Training Course ©CR Thomas 2010
 16/01/10 17 of 30

3 for n = 1:100

 if n <= 50,
 x(n) = n;
 else
 x(n) = n*2;
 end
end

x = [1:50 102:2:200];

4 for n=1:10
 x(n) = n^2;
end

x = [1:10].^2;
Note the “.^2” means “square each element
individually”. (1:10)^2 tries do a matrix
squaring on it which fails as it’s the wrong
shape.

5 for n = 1:10
 x(n) = n^2 + 2*n + 1;
end

x = 1:10;
x = x.^2 + 2*x + 1;
Note “x =” means “make the new value of x
equal to whatever the answer calculated on
the right is”

Exercise 21:
%HI_LO plays the game with this name.
% When prompted enter your guess, the computer
% will tell you if your guess is above or below
% the random number calculated by the computer.

x = fix(100*rand);
n = 7;
test = 1;
for k = 1:7
 numb = int2str(n);
 disp(['You have right to ' numb ' guesses'])
 disp(['A guess is a number between 0 and 100'])
 guess = input('Enter your guess ')
 if guess < x
 disp('Low')
 elseif guess > x
 disp('High')
 else
 disp('You won')
 test = 0;
 break
 end
 n = n - 1;
end
if test > 0

 MATLAB Training Course ©CR Thomas 2010
 16/01/10 18 of 30

 disp('You lost')
end

Exercise 24:
%SUMMING_TO_PI sums a series supposed to converge to pi for increasingly
% large numbers of terms and calculates the difference between the sum and
% MATLAB's value of pi, plotting the successive estimates.

clc
clear

difference_OK = false; % Initialise a flag for success.
number_terms = 2; % number of terms in the partial sum.
index = 0; % A counter for plotting.
while ~difference_OK
 index = index + 1; % Increment index on every loop.
 n_values = 0:number_terms;
 elements_of_sum = (-1).^n_values./(2*n_values+1);
 % Array calculation here.

 % Store values of the pi estimates in a vector.
 pi_estimate(index) = 4*sum(elements_of_sum);
 difference = pi-pi_estimate(index);
 if abs(difference) < 1e-6
 difference_OK = true; % pi and estimate are close enough.
 end

% Store the number of terms in a vector for plotting.
number_of_terms(index) = number_terms;
% Double the number of terms in the partial sum
% and try again.

 number_terms = 2*number_terms;
end
semilogx(number_of_terms,pi_estimate)
xlabel('Number of terms')
ylabel('{\pi} estimate')
% Note use of LaTeX here.
title('Summing a series for {\pi}.')

Exercise 25:
%HAILSTORM1
% Takes n (integer>1) and produces a sequence of numbers. If a number in
% the sequence is odd, the next number is 3*number+1, if even, number/2.
% Unproven conjecture that the sequence always reaches 1.

% CRThomas (2009)

 MATLAB Training Course ©CR Thomas 2010
 16/01/10 19 of 30

clc
n = input('What is the value of your integer? ');
if n/ceil(n)<1 % Check whole number (NB will be type float)
 disp('Input should be a whole number ')
 disp(['but processing floor(input) anyway i.e. ' num2str(floor(n)) char(10)])
 n = floor(n);
 if n < 1
 n = 1;
 end
end

k = 1;
a(k) = n;

while n > 1
 k = k+1;
 if rem(n,2)==0
 n = n/2;
 else
 n = 3*n+1;
 end
 a(k) = n;
end

plot(a)
disp(a)

Exercise 28:
function y = mysqrt(x,y0,tol)
%MYSQRT uses an iterative algorithm to find the square root of a scalar x,
% starting with initial guess y0, to a tolerance between successive answers
% in the iterations of tol.

% Should be modified to trap error messages and to fail gracefully.

% CR Thomas (2010)

% Check there are sufficient input arguments or set defaults:
if nargin == 1||2 % 1 or 2 input arguments need tol.
 tol = 1e-6; % default tolerance.
end
if nargin == 1 % also need y0.
 y0 = 1; % default initial value.
end
if nargin == 0
 disp('Need at least one input argument')

 MATLAB Training Course ©CR Thomas 2010
 16/01/10 20 of 30

 return % terminates execution of function.
end

% This function does not accept a vector or matrix for x. Check x is a
% scalar
if ~isscalar(x)
 disp('This function only accepts scalar input')
 return % terminates execution of function.
end

estimate = y0;
current_value = 0;
while abs(estimate - current_value)>tol
 current_value = estimate;
 estimate = (current_value + x/current_value)/2;
end
y = current_value;

 MATLAB Training Course ©CR Thomas 2010
 16/01/10 21 of 30

Appendix 1: A Brief Guide to MATLAB

Assignment Statements
e.g. x = 4; x is a scalar
y = [2, 3]; y is a row vector
 A = [-1, 0, 0; 1, 1, 0; 0, -1, 1]; A is a 3x3 matrix

= is an assignment operator, not “equals”. It is OK to write x = x + 1, meaning “ the new
value of x is the present value of x plus 1”. Think of “=” as “becomes” if you are not
sure.
The (optional) semicolon at the end of the line suppresses printing.

You can reference an element in a matrix and change it e.g. A(2, 3) = 1 changes the third
element in the second row.

Colon Operator
(a) If a colon is used to separate two integers, it generates all the integers between them
 e.g. c = 1:8; creates a vector c = [1 2 3 4 5 6 7 8]
(b) If a colon is used in a matrix reference, it represents an entire row or column.
 e.g. if A = [-1, 0, 0; 1, 1, 0; 0, -1, 1];
 x = A(:, 1); creates a vector x = [-1; 1; 0]

Transpose
If A = [-1, 0, 0; 1, 1, 0; 0, -1, 1], then A' is the transpose of A.
 A' = [-1, 1, 0; 0, 1, -1; 0, 0, 1]

If c is the row vector [1 2 3 4], c' is the column vector

4

3

2

1

Special Constants and Values
pi represents π

i, j represents 1−
See the help files for Inf, NaN,eps
ans is the name used by MATLAB for the value of an expression not given a variable
name.
These can be redefined, but it is best not to.

commas or spaces
separate elements in
rows

semicolons
separate rows

colon means
all rows

column 1

 MATLAB Training Course ©CR Thomas 2010
 16/01/10 22 of 30

Generating Matrices
e.g. A = zeros(4, 3); generates a matrix with 4 rows and 3 columns of zeros.
 A = ones(3, 2); generates a matrix with 3 rows and 2 columns of ones.
 A = eye(3); generates a square identity matrix of order 3.
You can set elements of matrices individually e.g. A(3,2) = 2; sets the element on the
third row, in the second column to 2.

User Input and Display
e.g. s = input('Enter values for s in brackets: '); displays the message in quotes on the
screen and accepts values for s enclosed in brackets e.g a response of [1 4 2 6] gives s =
[1 4 2 6].
A variable can be displayed without its name using disp e.g. disp(s) shows “1 4 2 6” on
the screen. See fprintf for more control over the output.

Plots
e.g. plot(x, y) produces a graph of points of y against x, where x and y are vectors. See
the help files for how to make your plots beautiful.

Array and Matrix Operations
Array operations are performed element by element
e.g. (if A and B are matrices of the same size) A.*B multiplies each element of A by the
corresponding element in B.
On the other hand A*B performs the matrix multiplication of A and B.
Similarly, B = A.^2 squares every element of A, whereas B = A^2 means B = A*A.
Matrix division: if AX = B, then X can be found by “left division”. X = A\B.
(MATLAB uses Gaussian elimination for this process.)

det(A) gives the determinant of A.
inv(A) gives the inverse of A.

If you see a message like:
??? Error using ==> /
Matrix dimensions must agree.
you may be using matrix algebra when you don’t mean to.

 MATLAB Training Course ©CR Thomas 2010
 16/01/10 23 of 30

MATLAB Functions
MATLAB has thousands of functions. Some useful ones are:
abs(x) absolute value of x sin(x) sine of x
sqrt(x) square root of x cos(x) cosine of x
round(x) rounds to the nearest integer tan(x) tangent of x
exp(x) computes ex sinh(x) hyperbolic sine of x
log(x) loge(x) cosh(x) hyperbolic cosine of x
log10(x) log10(x) tanh(x) hyperbolic tangent of x
Note x does not have to be a scalar; it can be a vector or other matrix. The output is then
the same size and shape as x.
Look up these and other functions in the help files. Be very careful with log() which
means the same as LN() in Excel.

Polynomials
polyval(a, x) evaluates a polynomial with coefficients given in the vector a for the values
in x e.g. a polynomial f = 3x3 – x2 – 1 is specified by the coefficient vector
a = [3 –1 0 –1]. If x = [2 1], then polyval(a, x) = [19 1].
Coefficient matrices can be added, subtracted and multiplied by a scalar.
To multiply two polynomials, their coefficient vectors are “convoluted”. Division is by
deconvolution. If f is as above with coefficient matrix a = [3 –1 0 –1] and g = x3 – x + 3
with coefficients given by b = [1 0 –1 3], then the coefficients of the product of g and f
are given by conv(a,b) = [3 -1 -3 9 -3 1 -3].

roots(a) gives the roots of the polynomial represented by the coefficient vector a.

poly(r) gives the coefficients of the polynomial with roots r.

Logical Operators
If = is for assignments, what is used for “equals”? This is one of the logical operators.
< less than ~= not equal
<= less than or equal & and
> greater than | or
>= greater than or equal ~ not
== equal
These are particularly useful in branch and loop decisions. See below.

 MATLAB Training Course ©CR Thomas 2010
 16/01/10 24 of 30

Symbolic Maths
To define a symbolic object, use sym or syms e.g.
sym('x') or
sym x y t n
Define a symbolic function e.g. f = 3*x + 2* y + t^2.
g1 = subs(f, x, 2) substitutes 2 for x in f to produce g1. NB f is not affected by subs
unless you write f = subs(f, x, 2).

Differentiate:
If g = cos(3*x)
g2 = diff(g) gives g2 = -3*sin(3*x).
g3 = diff(f, t) differentiates f with respect to t.

Limits:
limit((1 + x/n)^n, n, inf) finds the limit of (1 + x/n)n as n → ∞, giving exp(x).

Integrate:
int(x^n) gives x^(n+1)/(n+1) as expected; an indefinite integral.

int(sin(3*x), 0, pi/2) gives the value of the definite integral ∫
2

0

)3sin(

π

dxx i.e.
3
1

Plotting:
If have a function such as f = 3*x^2 + 2* x + 2,
ezplot(f) will plot the function for the range -π ≤ x ≥ π. You can change the range and
many other details of the plot.
This would also work for f = 3*t^2 + 2* t + 2.
The function findsym can be used to find out the “free variable” that is used by
MATLAB to differentiate or integrate with respect to, unless you tell it otherwise.

Other stuff:
Look at collect, expand, simplify, simple and pretty and for ways to simplify and tidy up
expressions.

Use double to get a double precision value from a symbolic number.
e.g.
sym(1/2) + sym(3/5) gives 11/10 (symbolic).
double(sym(1/2) + sym(3/5)) gives 1.1000 (double precision).
vpa (variable precision arithmetic) can be used to get more digits e.g.
pi = sym('pi'); makes pi symbolic object.
vpa(pi, 20) gives the value of π to 20 digits i.e. 3.1415926535897932385

Solving equations:
solve(f) tries to find values of the symbolic variable in f for which f is zero.

 MATLAB Training Course ©CR Thomas 2010
 16/01/10 25 of 30

For example
 syms a b c x
f = a*x^2 + b*x + c;
solve(f)
gives
 ans =

 1/2/a*(-b+(b^2-4*a*c)^(1/2))
 1/2/a*(-b-(b^2-4*a*c)^(1/2))

If f ≠ 0, use quotes e.g. g3 = solve('cos(2*x) + sin(x) = 1')1 gives
g3 =
 pi
 0
 1/6*pi
 5/6*pi

You can solve simultaneous equations e.g
[x y] = solve('x + y = 3','x - y = 1')
giving
x =
2
y =
1

Symbolic solutions to differential equations:
e.g. dsolve('Dx = 1 + t') gives
ans =
1/2*t^2+t+C1
Note (a) D stands for the first derivative; (b) the integration is assumed to be with respect
to t, but you can change this, and (c) the constant of integration C1.
You can specify an initial condition e.g. dsolve('Dy = 1 + t', 'y(0) = 1') gives
ans =
1/2*t^2+t+1
You can also try to solve higher order equations this way.

Command Line and m-Files
Many MATLAB operations and functions can be used at the command line (in the
Command Window). Commands can also be stored in text files to be executed later from
the command line. Such a file has an extension .m and is therefore called an m-file.
MATLAB has a built-in editor.

A “script” m-file is equivalent executing a sequence of commands at the command line.

1 From the MATLAB Help files

 MATLAB Training Course ©CR Thomas 2010
 16/01/10 26 of 30

A “function” m-file specifies input and output variable values; all other variables are
“local”, having meaning only inside the function e.g. imagine a function called isprime.
This might be in an m-file called isprime.m. This could contain the lines:
 function p = isprime(n)
 % p = isprime(n)
 % p == 1 if n is prime; 0 otherwise
 p = 1; % initialize p
 for k = 2:sqrt(n)
 if rem(n, k) == 0
 p = 0;
 end
 end
Anything on a line after a % is a “comment” and is ignored.

You could use this in a short segment of code like this, in order to test if a number is a
prime:
 N = input('Input a positive integer: ');
 if isprime(N)
 disp([num2str(N), ' is a prime number.'])
 else
 disp([num2str(N), ' is not a prime number.'])
 end

num2str(N) turns a number into string for display.

Program Flow Control
One advantage of m-files is the possibility of program flow control, so the program can
make decisions on the basis of variable values.

if
e.g. if <logical condition>
 <statements for first case>
 elseif <logical condition>
 <statements for second case >
 else
 <otherwise>
 end

If the first logical condition is true, the first group of statements is executed, and then the
program jumps to end. If it is not true, the second logical condition is tested, and if true,
the second group of statements is executed, and the program jumps to end. Otherwise the
third set of statements will be executed.
It is not necessary to have elseif and/or else to use an if statement.

If you have many cases to test, try switch.

 MATLAB Training Course ©CR Thomas 2010
 16/01/10 27 of 30

for and while
If you want something to repeat, use for or while
e.g. for n = 1:1000;
 if isprime (n)
disp(num2str(n))
 end
 end

All the statements are executed 1000 times.

Note that it is often possible to replace for loops with a vector approach, which is much
faster.

If you only want to loop until some condition is reached, use while e.g.
 n = 1;
while n <= 500
 disp(num2str(n))
 n = n^2+ 1;
end

 MATLAB Training Course ©CR Thomas 2010
 16/01/10 28 of 30

2nd row

3rd colunn

Appendix 2: Indexing and Loops:
RM Ward/CR Thomas

We mostly use MATLAB script files and functions to do repetitive and/or complex tasks.
(If it was a one-off and easy we’d do it by hand.) This typically involves using groups of
numbers which we work through one after the other.

We normally store groups of numbers – measurements, calculated results, vectors,
matrices etc. – in arrays. You have already looked at arrays in MATLAB, and their use as
matrices.

As an example, we might have the first 7 Fibonacci numbers2 in an array or matrix of
one row (sometimes called a row vector): fib = [1 1 2 3 5 8 13]. Perhaps we want to
calculate the 8th and 9th terms. However, before we can look at ways to do this, we need
to know about "indexing".

If you have an array or matrix, you can refer to its elements using "indexing". For
example, if

 A =

110

104

231

then in MATLAB you can find the value of the element in the 2nd row, and 3rd column

 A =

110

104

231

by the command:
 >> A(2,3)
The indices are row number first, then column number, starting in the top left position.
You can use the colon operator to refer to a whole row or column e.g.
 >> A(:,3)

means all the rows of column 3, and returns the column vector

1

1

2

, whilst
 >> A(2,:)
means row 2, all the columns, and returns the row vector [4 0 1].
Note that
 >> my_variable = A(2,3)

2 Fibonacci numbers are formed by adding the two previous numbers in the series that begins 1,1 and
continues 2,3,5,8,13,21, ….

 MATLAB Training Course ©CR Thomas 2010
 16/01/10 29 of 30

would set the value of my_variable to 1, should you want to use or change the value in
some way, without changing A. Then, if you executed the command
 >>my_variable + 1
at the Command Line, and the value of my_variable would become 2, whilst the value of
A(2,3) would remain 1.

You can use indexing to set the value of an element, or even a group of elements in a
matrix or vector e.g.

 >> A(2,3) = 2 changes A to give A =

110

204

231

, and
 >> A(:,3) = [0 0 0]'
note the transpose here to make the row vector into a column vector

gives A =

010

004

031

.

Finally, you can also use a variable as an index, usually in a loop. For example, if you
ran a script file with the following code in it:
 m = 3;
 n = m - 1;
 my_variable = A(m, n)
then the value of my_variable would be set to 1.

Returning to the variable fib defined earlier
fib = [1 1 2 3 5 8 13]
we can see that the value of fib(1) is 1, whilst fib(7) is 13.

You should now be able to see how we could find fib(8) and fib(9) i.e.
 >>fib(8) = fib(7) + fib(6)
 >>fib(9) = fib(8) + fib(7)
If we do this MATLAB just increases the length of (the vector) fib for us by adding the
new term on its end.

This is fine, but long winded if we want to do it for the next 100 values. Instead we’d
typically use variables – e.g. n – as our subscripts (pointers to position in the array) rather
than numbers. So
 >>n = 8;
 >>fib(n) = fib(n-1) + fib(n-2)
 >>n = 9;
 >>fib(n) = fib(n-1) + fib(n-2)
The neat thing about this is that the line "fib(n) = fib(n-1) + fib(n-2)" is the same both
times – only n changes – so we can easily repeat it using a for loop in a script file e.g.
 for n = 8:9

 MATLAB Training Course ©CR Thomas 2010
 16/01/10 30 of 30

 fib(n) = fib(n-1) + fib(n-2)
 end
In fact we could generate more or less as many elements as we like e.g. to get 100 values:

 fib(1) = 1;
 fib(2) = 1;
these lines "initialise" the process i.e. they give the values we need to get started
 for n = 3:100
 fib(n) = fib(n-1) + fib(n-2)
 end

Note that MATLAB is not C++, and in MATLAB it is considered bad practice to use i as
an index or "loop counter"; i is usually reserved to mean √-1 for when you are dealing
with complex numbers. If you are only going to use real numbers, you could redefine i
as a variable, but in any case it may be best to use a meaningful name such as index or
fib_index. Although such a name is a pain to write, it makes the code much easier to read
and understand.

Another commonly used bit of code in MATLAB is the ‘conditional’ statement,
assuming you already have a value for n and want to test if it matches a condition such as
"greater than" (>), "is equal to" (==), or "is less than" (<).
 if n >100,
 disp('n is greater than 100')
 end
or
 if n>100,
 disp('n is greater than 100')
 else
 disp('n is less than or equal to 100')
 end
We can combine these ideas e.g.
 for num = 1:100
 if num <= 50
 my_var(num) = num;
 else
 my_var(num) = 3*num;
 end
 end

Finally, if you are using a loop to add terms one at a time to an array like fib, don't forget
to use those pesky semicolons. Otherwise, MATLAB will write new values of the
variable (to the Command Window) every time the program goes around the loop.
Messy! Let the loop finish, and if you want to see the result, put a line like
 my_var
into your code, which just prints the value of my_var to the screen, or use disp.

