

WM07

Patrick Schuh¹, Arne Jacob², Fabrizio De Paolis³, David Seguin⁴

¹Airbus DS Electronics & Border Security, Germany
 ²Hamburg University of Technology, Germany
 ³European Space Agency, ECSAT, United Kingdom
 ⁴European Space Agency, ESTEC, The Netherlands

Slide 1

Active Multiple Feed per Beam SatCom Antennas with GaN SSPA at K-Band

Arne F. Jacob

Technische Universität Hamburg

Institut für Hochfrequenztechnik

jacob@tuhh.de

- Introduction
- MFB Architectures
- GaN Power Amplifiers
- Power Amplifier Integration
- Conclusion

- Introduction
- MFB Architectures
- GaN Power Amplifiers
- Power Amplifier Integration
- Conclusion

- Technology for active feeds for geostationary satellites
- K/Ka-band
- Users
 - Independent of terrestrial infrastructure
 - Airplanes
 - Ships (cruise liners or cargo vessels)
 - Camper, mobile homes
 - Disaster management
 - Rural / lower developed regions

• High-throughput satellite

uMW 2016

- Multispot-beam
- Four color scheme
- High gain antenna
- → Higher capacity through frequency reuse
- Multiple feed per beam
 - Overlapping beams
 - Shared feed antennas

WM07 New Developments for Satellite Communications on the Move

Slide 5 of 31

Required Power

- 99.5% availability (2 days p.a.)
- Here:
 - EOC-gain
 - Full bandwidth used
- 50 W per beam
- Adaptive coding & modulation can increase availability

WM07 New Developments for Satellite Communications on the Move

Slide 7 of 31

Beam Performance

- Example: 19 beams
- P_{beam} = 50 W
- CNR = 10.5 dB required

- Approx. 50 W per beam required
- 7 feeds per beam
- 7.1 W per feed
- Shared PAs for shared feeds
- → SSPAs in GaN technology

WM07 New Developments for Satellite Communications on the Mo	Ve
--	----

Slide 9 of 31

Outline

- Introduction
- MFB Architectures
- GaN Power Amplifiers
- Power Amplifier Integration
- Conclusion

- SSPAs directly at antenna ports
- High power region (antennas, polarizers): waveguide technology
 - Low loss
 - High power handling capability

Slide 11 of 31

- Low power region (beam forming network): planar technology
 - Low impact on total efficiency
 - Low heat, relaxed thermal management
 - PCB technology: small form factor, light weight
- Phase and amplitude control
 - Reconfigurable feed
 - Reflector steerable

[1] C. Rave, A. Jacob: MiKon 2016

Slide 13 of 31

Multifeed Setup

[3] C. Rave et al.: ESA Workshop on Advanced Flexible Telecom Payloads, 2016

- Introduction
- MFB Architectures
- GaN Power Amplifiers
- Power Amplifier Integration
- Conclusion

Slide 15 of 31

- Watt-level output powers at K-band demonstrated with GaN
- Reliability evaluated and improved (ESA GREAT²)
- X-band transmitter on Proba-V
- European GaN process for space needed

- SSPA output power requirement depends on the active antenna architecture
- Demonstrator designs:
 - 1-5 W for high element count arrays
 - 5-10 W for lower element count, MPMs
- TTC applications with large ground segment antennas require lower radiated powers → GaN MPMs
- Technology: Fraunhofer IAF 250 nm AlGaN/GaN on SiC
 - Breakdown voltage > 120 V
 - $f_t > 28 \text{ GHz}$
 - $f_{max} > 60 \text{ GHz}$
 - P_{out} = 5 W/mm @ 10 GHz

Slide 17 of 31

- 4 W demonstrator design
- Ongoing: integration

DC biasing / supply and low-frequency bypass capacitors

[4] C. Friesicke et al.: A Linear 4W Power Amplifier at K-Band Using 250nm AlGaN/GaN HEMTs, 8th European Microwave Integrated Circuits Conference, 2013

GaN SSPA – 4 W

- 4 W demonstrator design
- Ongoing: integration

DC biasing / supply and low-frequency bypass capacitors

[4] C. Friesicke et al.: A Linear 4W Power Amplifier at K-Band Using 250nm AlGaN/GaN HEMTs, 8th European Microwave Integrated Circuits Conference, 2013

WM07 New Developments for Satellite Communications on the Move

Slide 19 of 31

GaN SSPA – 10 W

- Demonstrator developed in LEVERAGE/LEVERAGE-2 projects
- Two-stage design with aggressive staging ratio
- Design targets for matching: high PAE
- 2nd harmonic termination for final stage
- Ongoing: demonstrator integration

[5] C. Friesicke et al.: A 40 dBm AlGaN/GaN HEMT Power Amplifier MMIC for SatCom Applications at K-Band, International Microwave Symposium 2016

Measurements – Small Signal

- More than 20 dB gain @ 18.2 GHz
- 30/37 cells of 4" wafer
 - Very good yield and homogenity

[5] C. Friesicke et al.: A 40 dBm AlGaN/GaN HEMT Power Amplifier MMIC for SatCom Applications at K-Band, International Microwave Symposium 2016

WM07 New Developments for Satellite Communications on the Move

Slide 21 of 31

GaN SSPA – 10 W

Measurements – Large Signal

- P_{sat} between 39.6 and 40 dBm
- (between 9 and 10 W)
- Power density > 3 W/mm
- Peak PAE between 28 and 32 % (@7.5 dB compression)
- Large signal gain 13.5 dB

[5] C. Friesicke et al.: A 40 dBm AlGaN/GaN HEMT Power Amplifier MMIC for SatCom Applications at K-Band, International Microwave Symposium 2016

Frequency	Power	PAE	Lin. Gain	Technology	Ref. / Year
21 – 23 GHz	37 dBm	48%	16.7 dB	.15 µm GaN	[6] (2012)
20 GHz	33 dBm	40%	11 dB	.25 µm GaN	[7] (2012)
22 GHz	36 dBm	34%	16 dB	.25 µm GaN	[4] (2013)
18 – 20 GHz	31 dBm	22%	20 dB	.25 µm GaN	[8] (2014)
2 – 18 GHz	37 dBm	20%	22 dB	.15 µm GaN	[9] (2014)
6 – 18 GHz	40 dBm	15%	20 dB	.15 µm GaN	[10] (2015)
18 – 19 GHz	40 dBm	30%	20 dB	.25 µm GaN	[5] (2016)

Not many published GaN HPAs at lower K-band

- [6] 5 Watt Doherty by TriQuint/Qorvo \rightarrow already mid K-band
- [9], [10] are TWAs by TriQuint/Qorvo \rightarrow optimized for bandwidth, not PAE
- [4], [7], [8] are previous results from TUHH / Fraunhofer IAF

[5] C. Friesicke et al.: A 40 dBm AlGaN/GaN HEMT Power Amplifier MMIC for SatCom Applications at K-Band, International Microwave Symposium 2016

WM07 New Developments for Satellite Communications on the Move

Slide 23 of 31

Outline

- Introduction
- MFB Architectures
- GaN Power Amplifiers
- Power Amplifier Integration
- Conclusion

PA Integration

- GaN power amplifier ٠
 - Moderate efficiency (η_{PAE} =0.2 .. 0.4)
 - Thermal management, thermal expansion critical

WM07 New Developments for Satellite Communications on the Move

Slide 25 of 31

Thermal Analysis

WM07 New Developments for Satellite Communications on the Move

Slide 27 of 31

- Introduction
- MFB Architectures
- GaN Power Amplifiers
- Power Amplifier Integration
- Conclusion

Conclusion

- High throughput satellite
 - Multi spotbeam, frequency reuse
 - Multiple feed per beam antenna
 - Low power per feed allows for use of SSPA technology
- GaN SSPA technology
 - 4 W and 10 W demonstrated
 - Peak PAE > 30 %
- SSPA integration
 - Thermal management concept

WM07 New Developments for Satellite Communications on the Move

Slide 29 of 31

Funding for this work was/is provided by the German Space Agency (DLR) on behalf of the Federal Ministry of Economics and Technology (BMWi) under research contracts 50YB 1128, 50YB 1314, and 50YB 1504.

Gefördert durch:

Bundesministerium für Wirtschaft und Technologie

aufgrund eines Beschlusses des Deutschen Bundestages

References

- [1] C. Rave and A. F. Jacob, "Architectures for Efficient Power Sharing in Active Multiple-Feed-per-Beam Satellite Antennas," in *International Conference on Microwaves, Radar, and Wireless Communications*, 2016.
- [2] C. Rave and A. F. Jacob, "A Wideband Radial Substrate Integrated Power Divider at K-Band," in *German Microwave Conference (GeMIC)*, 2015.
- [3] C. Rave, P. Feuerschütz, S. Samis, D. Schobert, M. Schneider, C. Friesicke, R. Quay, J. Kühn, A. F. Jacob, "A K-Band Multiple-Feed-per-Beam Transmitter with GaN-Power Amplifiers," in *ESA Workshop on Advanced Flexible Telecom Payloads*, 2016.
- [4] C. Friesicke, R. Quay, B. Rohrdantz, and A. F. Jacob, "A linear 4W Power Amplifier at K-Band using 250nm AlGaN/GaN HEMTs," in 8th Eur. Microw. Integr. Circ. Conf. (EuMIC), 2013.
- [5] C. Friesicke et al.: "A 40 dBm AlGaN/GaN HEMT Power Amplifier MMIC for SatCom Applications at K-Band," in *International Microwave Symposium (IMS)*, 2016.
- [6] C. F. Campbell, K. Tran, M.-Y. Kao, and S. Nayak, "A K-band 5W Doherty amplifier MMIC utilizing 0.15um GaN on SiC HEMT technology," in *IEEE Compound Semicond. Integr. Circ. Symp. (CSICS)*, 2012.
- [7] C. Friesicke, J. Kühn, P. Brückner, R. Quay, and A. F. Jacob, "An Efficient AlGaN/GaN HEMT Power Amplifier MMIC at K-Band," in 7th Eur. Microw. Integr. Circ. Conf. (EuMIC), 2012.
- [8] O. Cengiz, O. Sen, and E. Ozbay, "High power K-band GaN on SiC CPW monolithic power amplifier," in 9th Eur. Microw. Integr. Circ. Conf. (EuMIC), 2014.
- [9] TGA2214: 2 to 18 GHz 5 Watt GaN Power Amplifier, Triquint, 2014, Preliminary Datasheet.
- [10] TGA2574: 6 to 18 GHz 10 Watt GaN Power Amplifier, Triquint, 2015, Datasheet.

WM07 New Developments for Satellite Communications on the Move

Slide 31 of 31

Highly Integrated 20GHz/30GHz QFN Packaged ICs for Low-Cost SATCOM AESAs

October 2016

David Corman Chief Systems Architect Anokiwave, Inc. Andy Crofts V.P. Applications Engineering Anokiwave, Inc.

Ian Gresham V.P. Systems Engineering Anokiwave, Inc.

1

Purpose of Presentation

- SATCOM applications can benefit from AESA (Active Electronically Steered Antenna) technology
- Overview of AESA fundamentals and challenges
- Show how planar solutions at 20/30 GHz require increased functional integration
- Illustrate how the capability of silicon technologies can provide a platform for this integration, and in doing so, enable other enhanced performance possibilities
- Show examples of SATCOM ICs that demonstrate the requisite functions for successful deployment of mmW AESAs

Multiple SATCOM Applications Can Benefit from AESA Technology

- Fixed UTs that auto-point at GEO satellites
- Fixed UTs that track MEO/LEO satellites
- Mobile UTs that track GEO/MEO/LEO satellites
- Feed arrays that illuminate reflector antennas

Why mmW AESAs for SATCOM?

- AESA advantages
 - No moving parts, high reliability
 - Soft failure mechanism
 - Low profile, small size and lightweight
 - Flexibility to meet regulatory compliance (sidelobes, etc.)
- mmW AESAs
 - Short wavelengths mean many antenna elements can be located in compact, highly directive apertures

AESAs for Emerging SATCOM Applications

- AESAs traditionally use brick type TRMs installed orthogonally to the array
 - MMIC/discrete-hybrid assemblies in machined metal enclosures, with
 - Expensive and bulky (size, weight)
 - Limit the range of platforms and compromise performance for antenna size/gain/rotation
- Planar solutions have ICs mounted in the same plane parallel to the array using all SMT assembly
 - Lower profile antenna reduced wind drag and detectability
 - Lower size and weight for tower mounting and smaller platforms (UAV)
- Lower cost enabling new applications
 - Next generation SATCOM
 - Commercial radar
 - 5G terminals

Silicon Enables Low Size, Weight, & Cost AESAs

Traditional Hermetic Tx/Rx Modules with GaAs/GaN chip and wire assembly SATCOM planar solutions

SATCOM AESA Considerations

AESA Lattices at 20/30 GHz

- $\lambda/2$ lattices at SATCOM 20/30 GHz are quite small
- The only way to have planar AESAs at these frequencies is to fit the electronics within the lattice using <u>highly integrated silicon ASICs</u>

K-Band (20 GHz)

7.5 mm

Ka-Band (30 GHz)

5.0 mm

G/T for Receive AESAs

- G/T is a figure of merit for a receiver
- More difficult to achieve good G/T for a receive array than EIRP for a transmit array
 - G/T follows 10*log(N) while EIRP follows 20*log(N)
- G/T equation
 - $4\pi Ae/{\lambda o^2*[Tsky + To(F* L_{OHMIC}-1]]}$
 - Good G/T requires low system NF and place receiver as close to the elements as possible

Where

- N = number elements
- Ae = effective radiating area
- λo = free space wavelength
- F = receiver noise factor
- L_{OHMIC} = feed loss
- Tsky = sky temperature

9

10

• To = 290 degK

AESA ICs mounted at the radiating elements provide lowest feed loss and maximum G/T

EIRP vs. Conducted Power/Element

AESA Mechanical Construction

- Heat flows into PCB
- Lateral heat spreader in PCB
- Thermal bosses remove heat from PCB thermal spreader

So How Can Highly Integrated Silicon ASICs Help SATCOM AESAs?

- High-density integration combines mmW, analog, and digital control functions on a single IC:
 - ICs fit within the lattice for lowest feed loss
 - Highest G/T and EIRP
 - Simple serial control interface (SPI) reduces signal routing
 - High quality telemetry can be sampled, digitized onchip, and reported to the host system via the serial interface

Flexible Polarization in SATCOM Silicon AESA ASICs

13

Polarization can be fully programmable in silicon AESA ASICs

K-Band SATCOM Rx Quad Core IC

64 Element K-Band Array Using Anokiwave Quad Core Rx SATCOM IC

5a991.f

- 17.7 20.2 GHz operation
- Polarization flexible (selectable RHCP, LHCP, linear)
- 22 dB gain/channel
- 3.4 dB NF
- Quad or Octal Configuration
- 5 bit gain/phase control

Enables Low Cost All Silicon SATCOM Planar Arrays

K-Band SATCOM Rx Quad Core IC

- 17.7-20.2 GHz Rx only
- Supports 4 antenna elements
- Polarization flexible (RHCP, LHCP, linear)
- 22 dB gain, 3.4 dB NF
- 5 bit phase control (LSB=11.25 deg)
- 5 bit gain control (0-15.5 dB, LSB=0.5 dB)
- Temperature sense and report to host system
- Temperature compensated gain
- DC power: 0.3W

Multiple Data Slides

Ka-Band SATCOM Tx Quad Core IC

64 Element Ka-Band Array Using Anokiwave Quad Core Tx SATCOM IC

5a991.f

- 27.5 30.0 GHz operation
- Polarization flexible (selectable, RHCP, LHCP, Linear)
- 22 dB gain/channel
- +12 dBm output power per output port
- Quad or Octal Configuration
- 5 bit gain/phase control

Enables Low Cost All Silicon SATCOM Planar Arrays

Ka-Band SATCOM Tx Quad Core IC

- 27.5-30.0 GHz Tx only
- Supports 4 antenna elements
- Polarization flexible (RHCP, LHCP, linear)
- 22 dB gain, +12 dBm OP1dB
- Output power detect and telemetry
- 5 bit phase control (LSB=11.25 deg)
- 5 bit gain control (0-15.5 dB, LSB=0.5 dB)
- Temperature sense and telemetry
- Temperature compensated gain
- DC power: 0.9W (q) 1.35W (P1)

Multiple Data Slides

Conclusion

- AESAs highly useful for variety of SATCOM applications
- 20/30 GHz AESAs pose challenges (G/T, lattice, etc.)
- Silicon technology is the key to enabling planar AESA solutions at 20/30 GHz
 - Low profile planar solutions for lower size, weight, cost
- Quad core IC data was presented that demonstrates the requisite functions for successful deployment of mmW AESAs

Thank You !

Wide-angle scanning phased array antennas at Ka band

Tobias Chaloun, C. Waldschmidt, W. Menzel, F. Tabarani, H. Schumacher

Ulm University, Ulm, Germany

tobias.chaloun@uni-ulm.de

WM07 New Developments for Satellite Communications on the Move

Slide 1

Outline

- Motivation
- Requirements for Satcom on the move (SOTM) at Ka-band
- Phased array fundamentals
- Dual-polarized cavity antenna
- Dual-polarized stacked patch antenna
- System architectures for phased array antennas
- Active reflectarray demonstrator
- References

Motivation

Increasing demand for broadband mobile SATCOM links at Ka band

enables

- High speed internet services
- Voice communication
- Real-time air-traffic management
- Safety & security services

Objectives:

[1]

- Array architecture for up- and downlink at 30 / 20 GHz
- Low profile & lightweight architecture
- Flexible and scalable system design
- 2D electrical beam steering up to 60°
 WM07 New Developments for Satellite Communications on the Move

35786 km

B_{CH}=33 MHz

Satcom using geostationary orbit (GEO)

- Continuous coverage of specific region by only 1 satellite
- Path losses are significantly higher as for lower orbits
- Terminal requires precisely adjustable radiation characteristic (2° orbit spacing)

channels

Further reading: [2]

Slide 4

Satcom requirements – TX

- Optimum EIRP is about 62 dBW (equivalent to $32.84 \frac{dBW}{40kHz}$)
- Maximum permissible levels of off-axis EIRP are very stringent [3]

 \rightarrow Large number of elements in favor of less output power per element

 \rightarrow Prototype employs 90 \times 90 elements with Gaussian amplitude taper ($\alpha = 2$)

WM07 New Developments for Satellite Communications on the Move

Slide 5

(visible region)

Planar array fundamentals

- Higher order Floquet modes
 - ightarrow grating lobes at ϑ_{GL}

Gain degradation or even scan blindness occurs

closer to boresight mainly caused by

- \rightarrow Parallel-plate mode resonances
- \rightarrow Surface wave resonances:

$$\beta_{SW} = \sqrt{k_0^2 - k_z^2} = \sqrt{(k_0^2 + \alpha_{SW}^2)} \ge k_0$$
$$\sin(\vartheta_{SW}) = \left|\frac{\beta_{SW}}{k_0} - \frac{\lambda_0}{l_{x,y}}\right|$$

 \rightarrow Leaky wave resonances:

$$k_{LW} = -j\alpha_{LW} + \beta_{LW} \text{ with } \beta_{LW} \le k_0$$
$$\sin(\vartheta_{LW}) = \left| \frac{\beta_{SW}}{k_0} - n \frac{\lambda_0}{l_{x,y}} \right| \forall n \in \mathbb{Z}$$

WM07 New Developments for Satellite Communications on the Move

Slide 7

Design Goal: Maximize power transfer to the dominant Floquet-Mode (TE or TM)

Dual-polarized cavity antenna

- Cavity is formed within the top laminate by a series of surrounding vias
- Coupling between the radiating and evanescent modes in the aperture plane can be controlled by the stub width and depth

Simulated resistance of the TE/TM Floquet mode as a function of the stub depth

- Total height of the cavity kept <u>constant</u>
- Minima → surface wave resonances
- Maxima → leaky wave resonances

uMW 2016

WM07 New Developments for Satellite Communications on the Move

Simulated resistance of the TE/TM Floquet mode as a function of the stub width

- Minima \rightarrow surface wave resonances
- Maxima → leaky wave resonances

ightarrow Similar scan performance in the E-/H-plane can be adjusted

WM07 New Developments for Satellite Communications on the Move

Slide 11

Dual-polarized cavity antenna

Dual-polarized cavity antenna

Please Note:

- Mutual coupling to adjacent unit cell elements is independent of scan angle [4]
- Holds certainly not for coupling coefficient $|S_{21}|$ of the dual-polarized unit cell

35

Alternative antenna design: [8]

Dual-polarized cavity antenna

- Verification of the scan performance by means of the embedded element pattern
 - \rightarrow 11x11 passive array prototype
 - \rightarrow Dual-polarized element in the center is fed only
 - ightarrow All other ports are terminated

WM07 New Developments for Satellite Communications on the Move

Slide 15

Dual-polarized patch antenna

• Thin dielectric sheet on the very top \rightarrow surface wave resonances are shifted to larger ϑ Slide 17

WM07 New Developments for Satellite Communications on the Move

- Electric field distribution within the cavity of the stacked patch antenna element
 - \rightarrow Strong parasitic coupling to parallel-plate mode @ 29.4 GHz
 - ightarrow Excited by the slot apertures
 - ightarrow Shorting vias between both ground planes were introduced

WM07 New Developments for Satellite Communications on the Move

Slide 18

Dual-polarized patch antenna

Dual-polarized patch antenna

Array architecture with printed RF/LO distribution network

- Planar transmission lines exhibit high losses at mm-wave
- As the number of radiating elements increases
 - ightarrow Beam width gets narrower, **but** gain degrades noticeable after BEP*
- Additional amplifiers for loss compensation required
 - ightarrow Packaging and heat removal becomes more complex

Slide 21

Further reading: [10,11,12]

Phased array architectures

Phased array architectures

(Folded) Reflectarray architecture:

SiGe BiCMOS transceiver ICs

V2 with <u>RF-MEMS</u> SPDTs (4.0x3.85 mm²)

- 4 T/R-modules (RX @ 30 GHz for testing purpose only)
- Communication via serial I2C bus (SCLK/SDATA)
- Joint digital and mixed-signal circuit blocks

T/R module characterization (nMOS version)

- 65536 amplitude/ phase states
- Transmission tunable from -25.5 dB to 17.1 dB

WM07 New Developments for Satellite Communications on the Move

Slide 25

Active reflectarray demonstrator

- 144 dual-polarized stacked patch antennas
- 36 multifunctional MMIC

 → V1: with nMOS SPDT switches [16]
 → V2: with RF-MEMS SPDT switches
- heat sink/ fan combination
- Can be easily replaced by liquid cooling system

Active reflectarray demonstrator

Active reflectarray demonstrator

- Requirements for Satcom on the move (SOTM) at K-/ Ka-band are very stringent
 - ightarrow Innovative array architectures
- Dual-polarized antenna element are presented
 - ightarrow Reasonable bandwidth
 - \rightarrow Efficient wide-angle scanning
 - \rightarrow High port-to-port isolation
- Active reflectarray demonstrator using SiGe BiCMOS MMICs
 - ightarrow Scalable and flexible architecture
 - \rightarrow Highly-integrated module concept based on PCB technology
 - \rightarrow Enhanced by multifunctional MMICs with very fine amplitude/phase stepping
 - \rightarrow MMIC-version with integrated RF-MEMS demonstrated successfully

Slide 29

The author gratefully acknowledge the valuable contributions by ...

- The European Commission
- The FLEXWIN Consortium (http://www.flexwin.eu)

Thank you for your attention!

<u>Contact:</u> Tobias Chaloun Ulm University Institute of Microwave Engineering Albert-Einstein-Allee 41 89081 Ulm – Germany E-Mail: tobias.chaloun@uni-ulm.de

WM07 New Developments for Satellite Communications on the Move

Slide 31

References

- [1] Map source in figure © OpenStreetMap contributors (https://www.openstreetmap.org/copyright/en)
- [2] G. Maral, M. Bousquet, und Z. Sun, "Satellite Communications Systems: Systems, Techniques and Technology" John Wiley & Sons, 2011.
- [3] ITU-R S.524-9: Maximum permissible levels of off-axis e.i.r.p. density from earth stations in geostationarysatellite orbit networks operating in the fixed-satellite service transmitting in the 6 GHz, 13 GHz, 14 GHz and 30 GHz frequency bands. January 2006
- [4] A. K. Bhattacharyya, "Phased Array Antennas: Floquet Analysis, Synthesis, BFNs and Active Array Systems", Wiley Series in Microwave and Optical Engineering. John Wiley & Sons, Inc., 2006
- [5] R. Mailloux, "Phased Array Antenna Handbook", Antennas and Propagation Library. Artech House, 2005
- [6] R. Collin und F. Zucker, "Antenna theory, part 2", Inter-University Electronics Series. McGraw-Hill, 1969, vol. 7
- [7] T. Chaloun, C. Waldschmidt, und W. Menzel, "Wide-Angle Scanning Cavity Antenna Element for Mobile Satcom Applications At Ka Band," in European Conference on Antennas and Propagation, April 2016
- [8] Q. Luo, S. Gao, C. Zhang, D. Zhou, T. Chaloun, W. Menzel, V. Ziegler, und M. Sobhy, "Design and Analysis of a Reflectarray Using Slot Antenna Elements for Ka-band SatCom," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, P. 1365–1374, April 2015

References

- [9] T. Chaloun, V. Ziegler, und W. Menzel, "Design of a Dual-Polarized Stacked Patch Antenna for Wide Angle Scanning Reflectarrays," IEEE Transactions on Antennas and Propagation, vol. 64, no. 8, August 2016
- [10] E. Meniconi, V. Ziegler, R. Sorrentino, und T. Chaloun, "3D integration technologies for a planar dual band active array in Ka-band," in European Microwave Conference, October 2013, P. 215–218
- [11] A. I. Sandhu, E. Arnieri, G. Amendola, L. Boccia, E. Meniconi and V. Ziegler, "Radiating Elements for Shared Aperture Tx/Rx Phased Arrays at K/Ka Band," IEEE Transactions on Antennas and Propagation, vol. 64, no. 6, pp. 2270-2282, June 2016
- [12] A. Stark, A. Dreher, H. Fischer, A. Geise, R. Gieron, M. Heckler, S. Holzwarth, C. Hunscher, A. Jacob, K. Kuhlmann, O. Litschke, D. Lohmann, W. Simon, F. Wotzel, und D. Zahn, "SANTANA: Advanced electronically steerable antennas at Ka-Band," in 3rd European Conference on Antennas and Propagation, March 2009
- [13] T. Chaloun, C. Hillebrand, C. Waldschmidt, und W. Menzel, "Active Transmitarray Submodule for K/Ka Band Satcom Applications," in 9th German Microwave Conference, March 2015, p. 198–201
- [14] L. D. Palma, A. Clemente, L. Dussopt, R. Sauleau, P. Potier, und P. Pouliguen, "1-Bit Reconfigurable Unit Cell for Ka-Band Transmitarrays," IEEE Antennas and Wireless Propagation Letters, vol. 15, p. 560–563, 2016
- [15] S. Hum und J. Perruisseau-Carrier, "Reconfigurable Reflectarrays and Array Lenses for Dynamic Antenna Beam Control: A Review," IEEE Transactions on Antennas and Propagation, vol. 62, no. 1, p. 183–198, January 2014

WM07 New Developments for Satellite Communications on the Move

Slide 33

- [16] T. Chaloun, M. Kaynak, W. Menzel, Q. Luo, T. Purtova, S. Gao, V. Ziegler, H. Schumacher, F. Tabarani, und R. Starec, "Wide-angle Scanning Active Transmit/Receive Reflectarray," IET Microwaves, Antennas & Propagation, vol. 8, no. 11, p. 811–818, August 2014
- [17] J. Huang und J. Encinar, Reflectarray Antennas, IEEE Press Series on Electromagnetic Wave Theory. John Wiley & Sons, Inc., 2007
- [18] H. Schumacher, M. Kaynak, V. Valenta and B. Tillack, "Smarter ICs," in IEEE Microwave Magazine, vol. 13, no. 7, pp. S33-S40, Nov.-Dec. 2012.
- [18] F. Tabarani, T. Chaloun, T. Purtova, M. Kaynak, und H. Schumacher, "0.25µm BiCMOS System-on-Chip with Four Transceivers for Ka-band Active Reflectarrays," in International Microwave and Optoelectronics Conference, Porto de Galinhas, Pernambuco, Brazil, November 2015

Modular Panel Array for SatCom-on-the-Move Applications

Patrick Schuh

B. Schweizer, Th. Müller, A. Müller and M. Böck

Airbus DS Electronics and Border Security

Outline

Slide 1 of 37

AIRBUS DEFENCE & SPACE

- Motivation / Principle Concepts / Architecture
- Panel design
 - Antenna
 - Mechanics / Cooling
- Multifunction Corechips
 - Block diagram / Design targets
 - Packaging
 - Test of packaged MMICs
- Antenna Demonstrator

In future many different scenarios :

Product Opportunities II

WM07 New Developments for Satellite Communications on the Move

Slide 5 of 37

E & SPACE

EuMW 2016

Potential Market Volumes

(Airborne terminals)

Today

Tomorrow

Today

Tomorrow

Main benefits of Structure Integrated Antenna frontends

- •Remarkable reduced volume & weight of apertures and complete Frontends
- •Significantly reduced drag for data link antennas for airliners, high speed trains and other platforms
- •Load-bearing installation and reduced RADAR signature for military platforms
- •increased reliability due to e-scan technology (Graceful degradation)

Size

- Compact size, especially mounting depth is a key asset
- Lower drag, important for almost all moving platforms

Weight

• Reduction in weight important for all airborne platforms (Fuel saving)

Power

- Low power consumption is important
- Lower dissipation power allows air cooling (no liquid cooling in commercial aircrafts)

Cost

• For the commercial market key asset, in the military domain gaining importance

WM07 New Developments for Satellite Communications on the Move

Slide 9 of 37

- Motivation / Principle Concepts / Architecture
- Panel design
 - Antenna
 - Mechanics / Cooling
- Multifunction Corechips
 - Block diagram / Design targets
 - Packaging
 - Test of packaged MMICs
- Antenna Demonstrator

The Tx and Rx modules are key-components of the phased-array

They provide low-noise amplification (Rx) or output power (Tx) while providing phase and amplitude settings (beamforming)

WM07 New Developments for Satellite Communications on the Move

Slide 11 of 37

Antenna Concept

- Multilayer RF PCB
- High integrated Corechips
- Cooling structure

WM07 New Developments for Satellite Communications on the Move

Slide 13 of 37

CE & SPACE

High density RF PCB incorporates:

- Antenna elements (dual polarization)
- RF Manifold
- DC and Control Manifold
- Vertical RF interconnects
- RF transitions (Manifold side)

WM07 New Developments for Satellite Communications on the Move

Cooling / Mechanic

WM07 New Developments for Satellite Communications on the Move

Slide 15 of 37

AIRBUS

uMW 2016

Test of cooling solution

Device under test:

Test PCB with dummy heat sources Cooling structure fabricated with additive layer manufacturing (ALM) Results:

at nominal operation the "Cores" reach a maximum temperature of 67°C...68,8°C

(simulated: 66,5°C...68°C)

WM07 New Developments for Satellite Communications on the Move

• Motivation / Principle Concepts / Architecture

Outline

- Panel design
 - Antenna
 - Mechanics / Cooling
- Multifunction Corechips
 - Block diagram / Design targets
 - Packaging
 - Test of packaged MMICs
- Antenna Demonstrator

WM07 New Developments for Satellite Communications on the Move

Slide 17 of 37

Multifunction Core Chips (Tx / Rx)

8 Channels for 4 Radiating Elements in vertical / horizontal polarisation

Design target
Ka-Band (27.5GHz – 31GHz)
8
> 12dBm
> 11dB
> 5 bit
360° / 6 bit
~ 1300mW

WM07 New Developments for Satellite Communications on the Move

Slide 19 of 37

S

EuMW 2016

C AIRBUS 8 channel K-band RX chip

Parameter	Design target	
Frequency	K-Band (17.7GHz – 22GHz)	
Number of channels	8	
Gain per channel	20 dB	
Noise figure	3 dB	
Input IP3	-30 dBm	
Amplitude dynamic range	> 15.5dB	RX chip
Amplitude resolution	> 5 bit	Fully integrated 8 cm
Phase control / resolution	360° / 6 bit	
DC power consumption	~ 600mW	

A co-design between chip and package and even package and PCB is necessary due to

- High frequency range of operation
- High integration density
- Multichannel approach

WM07 New Developments for Satellite Communications on the Move

Slide 21 of 37

Different Package Solutions

Quad-flat-no-leads (QFN)

- Widely used package
- Molded or air package
- Reasonable loss at Ka-Band for the air-package
- Non-hermetic
- Low-cost

Liquid Crystal Polymer (LCP)

- Quasi hermetic package
- Low-loss at Ka-Band for the air-package
- Cavity can be designed to reduce interconnects costs
- Medium-cost

Ball Grid Array (BGA)

- Very high integration level if high pin counts needed
- Reasonable losses at Ka-Band possible
- Medium to high cost

embedded wafer level ball grid (eWLB)

- Very compact packaging => low impact to RF
- Cooling opposite to PCB (chip backside)
- Very high volume technology

WM07 New Developments for Satellite Communications on the Move

Slide 23 of 37

- & SPACE

Package Transition

Photo of packaged Corechip

Package size: Chip size: 6 x 6 mm² 4 x 4 mm²

WM07 New Developments for Satellite Communications on the Move

Slide 25 of 37

Measurement Environments

Soldered on Test Board

In Test socket (as exchangeable DUT)

Measurement in Testsocket

Test of packaged Rx-Corechip Gain Phase Map

Slide 27 of 37

Very good uniformity between channels Good attenuator dynamic range

- Motivation / Principle Concepts / Architecture
- Panel design
 - Antenna
 - Mechanics / Cooling
- Multifunction Corechips
 - Block diagram / Design targets
 - Packaging
 - Test of packaged MMICs
- Antenna Demonstrator

WM07 New Developments for Satellite Communications on the Move

Slide 29 of 37

Demonstrator setup

~500m

automatic electronic

scan

RX

horn

turntable

TX System

- Video Camera
- Video Signal preprocessing
- AESA Controlling
- TX Frontend
- UAV Structure Radom

RX System

- Horn antenna
- Turntable
- Turntable Controlling
- Video Signal preprocessing
- Video monitor

Link Demonstration

- TX System mounted in lorry
- RX System on ground
- Lorry driving along RX System while transmitting live high data rate video signal (HD)

WM07 New Developments for Satellite Communications on the Move

lorry

ТΧ

camera

driving direction

perture

Slide 31 of 37

video monitor

Mechanical Integration

128 housed TX Cores soldered to TX Panel (including Manifolds and Radiating Elements) => 512 patches

Antenna Diagramm

Beam [Azimut 30°; Elevation 0°]

Outdoor Demonstration I

- TX AESA in moving vehicle
- GPS and compass sensor in vehicle measuring position and attitude of Antenna
- TX AESA aiming to fix RX station while the platform is moving
- Transmission of live video stream to RX station

Outdoor Demonstration II

WM07 New Developments for Satellite Communications on the Move

Slide 35 of 37

Conclusions

- New module Panel for SatCom-on-the-move applications:
 - Multichannel Corechips available
 - K-Band RX Corechip
 - Ka-Band TX Corechip
 - New packaging technology (eWLB) successfully demonstrated for frequencies up to Ka-Band
 - Different cooling structures tested for
 - Liquid Cooling
 - Air Cooling

enabled by ALM technology

• Transmit Panel tested in outdoor environment

The Vision

WM07 New Developments for Satellite Communications on the Move

Slide 37 of 37

Techniques and Technologies for SatCom Antenna Systems

F.E. van Vliet, M. van Wanum

S. Monni, R. Bolt

WM07 New Developments for Satellite Communications on the Move

Slide 1 of 36

Introduction

Topic: Techniques and Technologies for SatCom Antenna Systems

Two major but separate developments will be discussed:

- 1. Enabling Microwave ICs
 - Performed together with Airbus Defence & Space
- 2. A Single transmit+receive aperture
 - Performed together with ESA-Estec

Microwave Front-End

MAADZ New Developments for Catallite Communications on the Mary	Slide 3
while new Developments for Satellite communications on the Move	of 36

Chip requirements

Transmit

- > Approx. 30 GHz, wavelength 10 mm
- > For planar dense phased array, this leaves 5x5 mm² per element
- > Area is limited
 - Power consumption is severely constrained
 - Two polarizations need be controlled, this doubles hardware
 - Due to space reasons 4 antenna elements served by 1 chip
 - After routing and packaging: Chip size max 4x4 mm²

Receive

- > Approx. 20 GHz, wavelength 15 mm, more space available
- same approach as TX used
- Input compression point relatively mild

What's inside that chip....

Bias circuits Bandgap PTAT Regulator Undervoltage detection Power-on-Reset Temperature sensor 8-bit ADC (for digital reading of temp.) DACs 8x 8 bit for VGA 16x 6 bit for VM Serial digital IO Decoder for VM ("corrected" cos+sin) 8x LNA/PA, VGA, VM 7x Wilkinson Common amplifier

Smaller than a single-channel GaAs core chip

WM07 New Developments for Satellite Communications on the Move

Slide 5 of 36

Block diagram TX chip

Slide 6 of 36

Block diagram RX chip

WM07 New Developments for Satellite Communications on the Move of 36

Design methodology

- Classical III-V
 - Model in 50 Ω microstrip environment + EM simulation
- Classical IV (Si)
 - Extraction RC \rightarrow RLC(K)
 - Large layout freedom
 - RLC(K) extraction is not very accurate at mmWave
- Combined approach
 - For local interconnect RLC extraction
 - For larger areas EM simulations
 - Large error on small contributions leads to small overall error
 - Requires blackboxing, risk of missing parasitics
 - Very demanding chip / packaging interaction
 - Due to frequency and number of I/Os

Use Transformers!

- Transformer with low coupling factor gives 3 inductors in the area of 1
- Solution is RF layout friendly
- But not all component value combinations can be realized
- The loss of a transformer with a low coupling factor is the same as for lumped L-C-L matching network

WM07 New Developments for Satellite Communications on the Move

Slide 9 of 36

Power consumption

- Power constrained due to thermal reasons
- Selection of optimal supply voltage
 - Lower voltage
 - Higher maximum current
 - More functions in parallel
 - Higher voltage
 - easier to make power
 - transistor stack (VGA, VM, next slide)
 - Higher internal impedances (2 mAp/2Vp = 1 kΩ powerload)
- For receive, 2.5 Volt supply allows for stacking of transistors
- > For transmit, 3.0 Volt supply allows for more efficient power generation
- These choices are technology dependent
 - NXP 0.25um BiCMOS, generation 8

Chip Layout - TX

WM07 New Developments for Satellite Communications on the Move

4x4 mm² Slide 11 of 36

Chip Layout - RX

WM07 New Developments for Satellite Communications on the Move

4x4 mm² Slide 12 of 36

- Flip-chip package used to mount chip on PCB
 - Good RF performance: low loss, good matching
 - Bad thermal performance: heat can only flow through balls
- > Exposed chip back side used for thermal path
 - Separation of RF and thermal performance!

WM07 New Developments for Satellite Communications on the Move

Slide 13 of 36

RX: VM performance

RX: VGA performance

Summary of measurements

Transmit		
	Frequency	27-31.5 [GHz]
	Gain	25 [dB]
	Pout	10 - 13 [dBm]
	Pdc	1450 [mW]
Receive		
	Frequency	17.7-22 [GHz]
	Gain	20 [dB]
	NF	3.1 [dB]
	IIP3	-30 [dBm]
	Pdc 600 [mW]	

WM07 New Developments for Satellite Communications on the Move

Slide 17 of 36

Antenna Technology

Requirements: ACTiFE

Advanced Antenna ConcepTs for aircraft in-Flight Entertainment

> Frequency, in Ku-band:

- Receive: 10.70 12.75 GHz
- Transmit: 14.0 14.5 GHz
- Integral bandwidth of 30%
- > Polarization:
 - Receive: circular (LH or RH)
 - Transmit: variable linear
 - Cross polarization: ≥ 15 dB (all beam/pol setting)
- Scan range:
 - 360 degrees in azimuth O Mainly electronically
 - 60 degrees in elevation _ Limited mechanically, to cover F.o.V.
- Structural constraints:
 - Low drag
 - Low impact on A/C-structural integrity
 - Integration of Tx and Rx in single panel(s)

Slide 19	WM07 New Developments for Cotallite Communications on the Meye	,
of 36	wivio/ New Developments for Satellite Communications on the iviove	1

Array architecture

- > Uplink and down link are at separate frequency bands
- > Two possible array approaches:
 - Single antenna array for RX and TX
 - wideband antenna technology
 - larger module to contain both TX and RX functions
 - challenging if wide scanning, dual polarization is required
 - Separate array antennas for RX and TX

Considerations

- ETSI mask definition (and ITU-R)
- Tapering (raised cosine) for optimum fit within mask
- Defined Tx data uplink
- Limitations on array size (trade-off physical size, cost, number of elements, etc.)
- Number of identical users (airplanes) for one satellite

48x48 and 70x70 Tx elements considered

Demonstrator Antenna definition

Considerations

- Enough array elements to perform large scanning
- Restrict no. of elements to limit material/component cost and test-time
- Dual polarization for testing cross-polarization
- Focus on Tx beam pattern setting

Demonstrator antenna array

- Gain at 10.7 GHz: 22.6 dB
- Uniform illumination
- 60° scan angle
- 16x16 dual polarized

- > 70x70 elements array as basic 'flat' antenna panel
- Electronically scanning up to at least 60°
- > Fits Tx mask: enabling multiple users and/or high data rate per user
- Relatively low Tx power level per array-element
- > Adequate Rx sensitivity with feasible receive NF per array-element

WM07 New Developments for Satellite Communications on the Meye	Slide 23
wivior new Developments for Satellite Communications on the wove	of 36

Structural evolution of antenna system

- > Demand for structures with limited height, footprint:
 - Drag
 - Structural impact on A/C
- Reduced system complexity

Fully electronic	Minor mechanical
6	1
2x13824	2x4900
~40cm	~30cm
θ =45° ϕ =360°	$\theta = 60^{\circ} \phi = 360^{\circ}$
	Fully electronic 6 2x13824 ~40cm θ=45° φ=360°

WM07 New Developments for Satellite Communications on the Move

Slide 24 of 36

> Combined requirement on bandwidth, far-out scan and cross polarization:

State of the art does not fulfil all of these

Dimensioning of the dipoles

- Optimization through a genetic algorithm:
 - Minimize the fitness function: $max_f(\Gamma_B, \Gamma_{E\theta_{max}}, \Gamma_{H\theta_{max}})$
 - Which is an analytical function of, amongst others, geometrical parameters:

> Unit cell size, d_x and d_y , are chosen fixed (eventually 0.435x0.435= 9x9 mm²)

From idealized to realistic dipoles

Practical implementation of the design (I)

> Multi-layer PCBs and interleaving orthogonal linear array panels.

WM07 New Developments for Satellite Communications on the Move

Slide 28 of 36

> Implementation of the ground plane through a wire grid.

WM07 New Developments for Satellite Communications on the Move

Slide 29 of 36

Practical implementation of the design (III)

Introduction of a wide angle impedance matching (WAIM) structure;

WM07 New Developments for Satellite Communications on the Move

Slide 30 of 36

WM07 New Developments for Satellite Communications on the Move

Slide 31 of 36

An inside view

In conclusion

Slide 34 of 36

In conclusion ...

Acknowledgement

- We kindly acknowledge the support of Airbus Defence and Space for the microwave developments and contributions to these slides
- We kindly acknowledge the support of ESA-ESTEC for the antenna developments and contributions to these slides
- [1] "Characterization of a dual-polarized connected-dipole array for Ku-band mobile terminals", D. Cavallo et.al., IEEE Trans. Ant.& Prop., Feb. 2016.
- [2] "Fully-Integrated Core Chip for X-Band Phased-Array T/R modules", F.E. van Vliet et.al., IMS 2004.

Electronically Liquid Crystalbased Beamsteering Antennas for SatCom-Applications

Matthias Jost

Technische Universität Darmstadt

jost@imp.tu-darmstadt.de

WM07 New Developments for Satellite Communications on the Move

Why phase shifters?

broadside radiation

UNIVERSITÄT DARMSTADT

Why phase shifters?

- fixed lines
 - broadside radiation
 - \geq tilted radiation by mechanical rotation

WM07 New Developments for Satellite Communications on the Move

Motivation

TECHNISCHE UNIVERSITÄT DARMSTADT

Why phase shifters?

- fixed lines
 - broadside radiation
 - ➢ tilted radiation by mechanical rotation
- phase shifters (equal orientation)
 - broadside radiation

Motivation

Why phase shifters?

- fixed lines
 - broadside radiation
 - tilted radiation by mechanical rotation
- phase shifters (equal orientation)
 - broadside radiation
- phase shifters
 (continuous orientation)
 tilted radiation

WM07 New Developments for Satellite Communications on the Move

Motivation

Onboard internet, satellite TV reception in automobiles, ships, boats, airplanes

Transceiver antennas for inter-satellite links (GEO \rightarrow LEO), High-Q-tunable filters for satellite transponders

Motivation

TECHNISCHE UNIVERSITÄT DARMSTADT

Onboard internet, satellite TV reception in automobiles, ships, boats, airplanes

requires fast switching

times > planar devices Transceiver antennas for inter-satellite links (GEO \rightarrow LEO), High-Q-tunable filters for satellite transponders

- Motivation
- Fundamentals of Liquid Crystal
- High performance phase shifter
- Planar phased array antennas
- Conclusion

WM07 New Developments for Satellite Communications on the Move

Fundamentals of

Liquid Crystal

Fundamentals of

Liquid Crystal

WM07 New Developments for Satellite Communications on the Move

Fundamentals of

TECHNISCHE UNIVERSITÄT DARMSTADT

Liquid Crystal

Mischung	ε _p	tano _p	٤ _s	tano _s	Mischung	ε _p	tano _p	٤ _s	tano _s
GT3-23001	3.1909	0.0175	2.3435	0.0286	GT3-23001	3.19	0.0035	2.41	0.0143
TUD-224	3.2059	0.0148	2.3502	0.0341	TUD-224	3.18	0.003	2.41	0.0125
TUD-424	3.2903	0.0147	2.3763	0.0329	TUD-424	3.27	0.0033	2.45	0.0126
TUD-325	3.4067	0.0164	2.3629	0.0317	TUD-325	3.22	0.0025	2.42	0.0111
TPX (Lit. 1.45-1.46)	2.0776	0.0201			Reference va	lues for 19	GHz and R.T	. (Source	Merck)

Average value at 0.5-1.5 THz, tan δ is determined by the dynamic range of the system

[Wei+13b]

- Motivation
- Fundamentals of Liquid Crystal
- High performance phase shifter
- Planar phased array antennas
- Conclusion

High performance phase shifter

TECHNISCHE UNIVERSITÄT DARMSTADT

Partially filled with LC
 reduced dielectric loss

EuMW 2016

LISA-ES

- Two-piece container with two filling holes
- Biasing system processed on Mylar films
- Split-block is electroplated with Au
 avoid passivation

Material	٤ _r	tanō
Rexolite	2.53	6.6·10 ⁻⁴
LC	3.27	2.2·10 ⁻³
	2.39	7·10 ⁻³

WM07 New Developments for Satellite Communications on the Move

- Dielectric tapering
 - two steps
 - mix of discrete and continuous
- Alignment
 - transversal misalignment < 0.1 mm</p>
 - angular misalignment < 0.2°</p>
- Filling
 - under normal conditions
 - sealing with orthogonally aligned pins
- Metallic tapering
 - two steps
 - discrete

High performance phase shifter

TECHNISCHE UNIVERSITÄT DARMSTADT

 Stripline modes occur between biasing lines and waveguide walls

LISA-ES

- RF is focused in non-tuneable material
- Implementation of λ/4-stub lines and stepped impedances
 - suppression of stripline modes
 - RF field is concentrated in the LC
- λ/4-stub lines are already sufficient

λ/4 stub-line

WM07 New Developments for Satellite Communications on the Move

 Electrodes are connected to voltage dividing network

> only two voltage sources are needed

- Biasing electrodes are processed on 50 µm thick Hostaphan films
 - breakdown voltage: 220 kV/mm
 - > narrowest structure: 60 µm
- LC cavity has a total length of 120 mm $\succ \Delta \phi_{\text{sim}} \approx 600^{\circ}$
- Measurement are carried out in two steps
 WR42 & WR28

EuMW 2016

High performance phase shifter

TECHNISCHE UNIVERSITÄT DARMSTADT

- Results
 - Return loss better than 12 dB

LISA-ES

- Insertion loss around 3 dB (4 dB) for parallel (perpendicular) orientation
- No perfect match to simulations

- Results
 - Return loss better than 12 dB
 - Insertion loss around 3 dB (4 dB) for parallel (perpendicular) orientation
- No perfect match to simulations

$$FoM = \frac{\Delta \phi}{IL}$$
, [FoM] = °/dB

- differential phase shift better than 460°
- FoM around 130°/dB

LISA-ES

High performance phase shifter

WM07 New Developments for Satellite Communications on the Move

High performance phase shifter *LISA-ES*

TECHNISCHE UNIVERSITÄT DARMSTADT

Technology	Topology	f [GHz]	Δφ [°]	IL [dB]	FoM [°/dB]	Ref.
Varactors	loaded transmission line	6	410	6	68	[Ell+03]
InGaAs	PIN switch diodes	28	349	7.8	45	[Yang+11]
	distributet MEMS CPW	40	84	1.8	47	[Bar+98]
MEMS	loaded transmission line (4 bit)	60	250	3	83	[Kim+02]
	Hybrid distributed RTPS	15	337.5	2.2	153	[Pil+12]
MEMS & CMOS	RTPS (CMOS 0.18 μm)	65	144	3.2	42	[Cha+13]
DCT	loaded CPW	9	405	7.6	53	[Saz+11]
001	loaded CPW	40	600	27	22	[Velu+07]
	inverted microstrip line	24	330	3	110	[Mue+04]
	finline	40	303	4.8	62	[Mue+05]
	ridged waveguide	94	500	7.2	69	[Mue+06]
LC	loaded CPW	20	90	1.5	60	[Goe+09]
	hollow waveguide (magn. biasing)	35	110	0.55	200	[Gae+09]
	hollow waveguide	29	550	4.2	130	[Wei+13a]
	hollow waveguide (magn. biasing)	100	309	2.3	135	[Jost+13]
LC & LTCC	SIW waveguide	28	400	9.7	41	[Str+14]
LC & MEMS	loaded line	93	190	4.5	42	[Fri+11]
LC & CMOS CPW (CMOS 0.35 µm)			275	5.35	52	[Fra+13]

- Motivation
- Fundamentals of Liquid Crystal
- High performance phase shifter
- Planar phased array antennas
- Conclusion

WM07 New Developments for Satellite Communications on the Move

Planar phased array antennas

TECHNISCHE UNIVERSITÄT DARMSTADT

Large Market Potential

 Future GEO-/MEO-/LEO-Satellites for Broadcasting & Communications Services in C-/Ku-/Ka-/K-Bands

Demand

- Electronically Reconfigurable Antennas
- Affordable: Low Cost Technology
- Aesthetic: Compact and Low-Profile

Some Requirements				
Phased-Array	Phase Shifter			
Large Scanning Range	360° Phase Shift			
High Antenna Gain	Low-Insertion Loss			
2D beam steering	Compact $A < (\lambda_0/2)^2$			
Low cost	Full integration			

WM07 New Developments for Satellite Communications on the Move

Planar phased array antennas

WM07 New Developments for Satellite Communications on the Move

Response Times (Planar topology)

Planar phased array antennas

Planar phased array antennas

WM07 New Developments for Satellite Communications on the Move

- Motivation
- Fundamentals of Liquid Crystal
- High performance phase shifter
- Planar phased array antennas
- Conclusion

WM07 New Developments for Satellite Communications on the Move

- Motivation
- Fundamentals of Liquid Crystal
- High performance phase shifter
- Planar phased array antenna

Acknowledgement

WM07 New Developments for Satellite Communications on the Move

Literature

- [Bar+98] S. Barker and G. M. Rebeiz, "Distributed MEMS true-time delay phase shifters and wide-band switches," *IEEE Transactions on Microwave Theory and Techniques, vol.*46, pp. 1881–1890, 1998
- [Cha+13] C.-C. Chang, Y.-C. Chen and S.-C. Hsieh, "A V-band three-state phase shifter in CMOS-MEMS technology," *IEEE Microw. Wireless Compon. Lett.*, vol. 23, no. 5, pp. 264–266, May 2013
- [Ell+03] F. Ellinger, H. Jackel and W. Bachtold, "Varactor-loaded transmission-line phase shifter at Cband using lumped elements," *IEEE Transactions on Microwave Theory and Techniques*, vol.51, no.4, pp.1135-1140, Apr 2003
- [Fra+13] A.-L. Franc, O. H. Karabey, G. Rehder, E. Pistono, R. Jakoby, and P. Ferrari, "Compact and Broadband Millimeter-Wave Electrically Tunable Phase Shifter Combining Slow-Wave Effect With Liquid Crystal Technology," *IEEE Transactions on Microwave Theory and Techniques*, vol.61, no.11, pp.3905-3915, Nov. 2013
- [Fri+11] C. Fritzsch, F. Giacomozzi, O. H. Karabey, F. Goelden, A. Moessinger, S. Bildik, S. Colpo, and R. Jakoby, "Continuously tunable W-band phase shifter based on liquid crystals and MEMS technology," *41st European Microwave Conference (EuMC), 2011,* pp.1083,1086, 10-13 Oct. 2011
- [Gae+09] A. Gaebler, F. Goelden, A. Manabe, M. Goebel, S. Mueller and R. Jakoby, "Investigation of high performance transmission line phase shifters based on liquid crystal," *European Microwave Conference, 2009*, Rome, pp. 594-597.

Literature

Literature

TECHNISCHE UNIVERSITÄT DARMSTADT

- [Goe+09] F. Goelden, A. Gaebler, M. Goebel, A. Manabe, S. Mueller and R. Jakoby, "Tunable liquid crystal phase shifter for microwave frequencies," *Electronics Letters*, vol.45, no.13, pp.686-687, Jun. 18 2009
- [Jost+13] M. Jost, C. Weickhmann, S. Strunck, A. Gaebler, C. Fritzsch, O. H. Karabey, and R. Jakoby, "Liquid crystal based low-loss phase shifter for W-band frequencies," *Electronics Letters*, vol.49, no.23, pp.1460-1462, Nov. 7 2013.
- [Kim+02] H.-T. Kim, J.-H. Park, S. Lee, S. Kim, J.-M. Kim, Y.-K. Kim, and Y. Kwon, "V-band 2-b and 4-b low-loss and low-voltage distributed MEMS digital phase shifter using metal–air–metal capacitors," *IEEE Trans. Microw. Theory Techn.*, vol. 50, no. 12, pp. 2918–2923, Dec. 2002
- [Mue+04] S. Mueller, P. Scheele, C. Weil, M. Wittek, C. Hock and R. Jakoby, "Tunable passive phase shifter for microwave applications using highly anisotropic liquid crystals," *International Microwave Symposium Digest, 2004 IEEE MTT-S*, vol.2, pp.1153-1156, 6-11 June 2004
- [Mue+05] S. Mueller, C. Felber, P. Scheele, M. Wittek, C. Hock and R. Jakoby, "Passive tunable liquid crystal finline phase shifter for millimeter waves," *European Microwave Conference, 2005*, vol.1, pp.1-4, 4-6 Oct. 2005
- [Mue+06] S. Mueller, F. Goelden, P. Scheele, M. Wittek, C. Hock and R. Jakoby, "Passive Phase Shifter for W-Band Applications using Liquid Crystals," 36th European Microwave Conference, pp.306-309, 10-15 Sept. 2006

WM07 New Developments for Satellite Communications on the Move

TECHNISCHE UNIVERSITÄT DARMSTADT

- [Pil+12] B. Pillans, L. Coryell, A. Malczewski, C. Moody, F. Morris and A. Brown, "Advances in RF MEMS phase shifters from 15 GHz to 35 GHz," *International Microwave Symposium Digest* (*MTT*), 2012 IEEE MTT-S, pp.1-3, 17-22 June 2012
- [Saz+11] M. Sazegar, Y. Zheng, H. Maune, C. Damm, X. Zhou, J. Binder and R. Jakoby, "Low-Cost Phased-Array Antenna Using Compact Tunable Phase Shifters Based on Ferroelectric Ceramics," *IEEE Transactions on Microwave Theory and Techniques*, vol.59, no.5, pp.1265-1273, May 2011
- [Str+14] S. Strunck, A. Gaebler, O. H. Karabey, A. Heunisch, B. Schulz, T. Rabe, R. Follmann, J. Kassner, D. Koether, A. Manabe and R. Jakoby, "Reliability Study of a tunable Ka-Band SIW-Phase Shifter based on Liquid Crystal in LTCC-Technology," *International Journal of Microwave and Wireless Technologies*, pp. 1–7, July 2014
- [Velu+07] G. Velu, K. Blary, L. Burgnies, A. Marteau, G. Houzet, D. Lippens and J.-C. Carru, "A 360° BST Phase Shifter With Moderate Bias Voltage at 30 GHz," *IEEE Transactions on Microwave Theory* and Techniques, vol.55, no.2, pp.438-444, Feb. 2007
- [Wei+13a] C. Weickhmann, N. Nathrath, R. Gehring, A. Gaebler, M. Jost and R. Jakoby, "A light-weight tunable liquid crystal phase shifter for an efficient phased array antenna," *European Microwave Conference (EuMC), 2013*, pp.428-431, 6-10 Oct. 2013

- [Wei+13b] C. Weickhmann, R. Jakoby, E. Constable and R. A. Lewis, "Time-domain spectroscopy of novel nematic liquid crystals in the terahertz range," *38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) 2013*, Mainz, 2013, pp. 1-2.
- [Yang+11] J. G. Yang and K. Yang, "Ka-band 5-bit MMIC phase shifter using InGaAs PIN switching diodes," *IEEE Microw.Wireless Compon. Lett.*, vol. 21, no. 3, pp. 151–153, Mar. 2011

New Developments for Satellite Communications on the Move Part 2 – Aeronautical Terminals

wмо7 Fabrizio de Paolis, David Seguin European Space Agency

Fabrizio.De.Paolis@esa.int

Slide 1 of 126

Overview of In Flight Connectivity and Airborne Terminals Developments at ViaSat

Ferdinando Tiezzi

ViaSat

Ferdinando.Tiezzi@ViaSat.com

ViaSat Ka-Band Satellite Fleet

WM07 New Developments for Satellite Communications on the Move Slide 3 of 126 VaSat

Residential Broadband Access EXEDE & Tooway

In-Flight Connectivity

- » 700+ global aircraft in Ku & Ka bands
- » Various Commercial and Government Aircraft
- » Millions of operating hours
- » High performance ISR missions

WM07 New Developments for Satellite Communications on the Move

Slide 6 of 126

ViaSat.

Airlines Value Passengers Engagement Airlines Value Happy Customers

WM07 New Developments for Satellite Communications on the Move

Slide 7 of 126

ViaSat

Yesterday Onboard Wi-Fi Reality

»Not many users
> Take Rate 3% to 8%

»Not very satisfied » Page Load Times

> 30 to 60+ sec

WM07 New Developments for Satellite Communications on the Move

Slide 8 of 126

Airline WiFi Web Performance

WM07 New Developments for Satellite Communications on the Move

Bandwidth = Engaged Customers

- » Need bandwidth to sustain speed in the face of high penetration
 - > Speed = good experience
- » Need cheap bandwidth to enable engagement
- » How much capacity will it take to achieve engagement & happy passengers?
 - > Hypothetical test case:
 - > Take rate of 60%
 - > 45 MB per session average
 - > 2500 aircraft (3 airlines)
 - > Two thirds flying

ViaSal

Slide 9 of 126

What network can offer this?

Business Models

- » Bandwidth is the key driver
 - > Plentiful & Cheap
 - Enough bandwidth to sustain high speeds in the face of high take rate & usage
- » Nobody will sponsor a bad experience
- » How much do you give vs. sell?
 - Possible to make everyone happy and make money / enhance value at the same time

EXEDE Inflight connectivity as at home

MW 2016

Medium Profile Airborne Antenna

Mantarray-40

Mantarray-32

- » Medium profile antennas for narrowbody and widebody aircraft
 - > Two versions: Mantarray-40 and Mantarray-32
- » Radome and mounting kits for various aircraft under development

Item	Description
Antenna Class	Two-way (Tx & Rx) medium profile (height < 10") airborne antenna
Aperture	Ka-band dual polarized waveguide horn array
Positioner	Elevation (EL)-over-Azimuth (AZ) positioner, DC servo motors
RF Electronics	Built-in airborne transmit/receive integrated assembly (ATRIA) based on SurfBeam 2 consumer technology

WM07 New Developments for Satellite Communications on the Move

Slide 14 of 126

Ka Mantarray Architecture

Key Requirements & Capabilities Transmit & Receive Performance

Parameter	Requirement	Capability
Rx RF Frequency	18.3 to 20.2 GHz, 500 MHz Instantaneous Bandwidth	Comply
Rx G/T*	M40: 12.5 dB/K typical, at 19.95 GHz M32: 11.3 dB/K typical, at 19.95 GHz	M40: 12.5 dB/K M32: 11.8 dB/K
Rx/Tx Polarization	Circular, receive orthogonal to transmit polarization	Comply
Tx RF Frequency	28.1 to 30.0 GHz	Comply
Tx EIRP	43.5 dBW minimum, at 29.5 GHz, at 36K feet, level flight, including radome loss of 1.2 dB, excluding pointing loss.	M40: 44.6 dBW M32: 44.4 dBW
Antenna Tx Cross-Pol Discrimination (XPD)	-23 dB max (-25 dB objective), peak of beam	Comply

* Altitude = 36,000ft Ambient air temperature = -55°C (218°K) at Altitude

Sky noise temperature = 10°K at 45° elevation

Aperture and beam former physical temperature is equal to air temperature

Key Environmental Requirements

Parameter	Requirement	Comply?
Temperature & Altitude	DO-160F Section 4 Cat D2 Mod DO-160F Section 5 Cat A	Comply
Humidity	DO-160F Section 6 Cat C	Comply
Shock & Vibration	DO-160F Section 7 Cat B (Level F2) DO-160F Section 8 Cat S (Curve C)	Comply
Waterproofness	DO-160F Section 10 Cat W	Comply
Fluids Susceptibility	DO-160F Section 11 Cat F (Propylene Glycol Spray Only)	Comply
Sand & Dust	DO-160F Section 12 Cat S	Comply
Fungus	DO-160F Section 13 Cat F	Comply
Salt Fog	DO-160F Section 14 Cat S	Comply
lcing	DO-160F Section 24 Cat A	Comply
w Developments for Sat	tellite Communications on the Move Slide 17 of 126	i ViaSa

WM07 New Developments for Satellite Communications on the Move

Medium Profile Airborne Ku/Ka

- » KuKarray combines Ku-band and Ka-band into a single antenna
- » Antenna and radome currently in development - DO-160 certification in late 2014

High Profile Airborne Ku-band

VR-18Ku

Slide 19 of 126

- » Airborne reflector antenna for tail, fuselage or hatch mount
- » Operates over ViaSat's Yonder Ku-band network
- » Installed on commercial and military platforms
- » Over 600 antenna systems delivered
- » VR-18Ku in development

WM07 New Developments for Satellite Communications on the Move

MW 2016

High Profile Airborne Ka-Band

VR-12Ka

- » Developed from ViaSat's VR-12 Ku-band antenna product
- » Tail, fuselage or hatch mount
- » Operates with ArcLight and Surfbeam 2 modems
- » Cross-pol or Co-pol versions
- » Larger reflector sizes are on the product roadmap – VR-18Ka

ViaSat

Hatchmount Airborne Antennas

» C-130 Hatch mounted VR-12 Ku and Ka

» Developing Ka-band antenna for C-17 hatch

WM07 New Developments for Satellite Communications on the Move Slide 21 of 126

Integrating Microwave Components in the Wings of a Remotely Piloted Aircraft

Dr Joseph A. Barnard

Barnard Microsystems Limited

joseph.barnard@barnardmicrosystems.com

ViaSat

Background

WM07 New Developments for Satellite Communications on the Move

Remotely Piloted Aircraft (RPA) engaged in civilian applications often need to be operated Beyond Line Of Sight (BLOS).

In order to operate BLOS, an RPA requires:

- Reliable airframe and avionics
- A satellite based communications link with the Remote Pilot Station (RPS)
- Collision Detect and Avoid system.

Slide 23 of 126

of 126

WM07 New Developments for Satellite Communications on the Move

Example: locating a Ka band satcoms unit on a RPA

Left: the Ka band satcoms terminal mounted in the fuselage of a General Atomics Reaper RPA.

The sheer size, weight and cost of this type of steerable antenna used in this Ka band satcoms terminal makes this solution difficult to implement on a mid-sized RPA engaged in civilian applications.

Typical satcoms data relay bit rates:

- L band: 50 150 kbit / sec
- Ka band: 2 6 Mbit / sec clear sky

WM07 New Developments for Satellite Communications on the Move

Slide 25 of 126

The BML InView RPA, for use in civilian applications

Example of a mid sized RPA engaged in civilian applications: the BML InView, twin engine RPA:

- 6m wingspan
- 800 mm wing chord
- 2x 1,650 Watt electrical generator

The problems with standard satcoms antennas are:

- aerodynamic drag sometimes
- mechanical reliability
- no graceful degradation

Close up of the Cobham Explorer 325 antenna

Close up of the mechanically steered L band satcoms unit in the Cobham Explorer 325 terminal, showing the Tx and Rx helical antennas. The good points about this antenna are:

- Horizon to horizon coverage
- Low cost

The not so good points of this antenna for this application are:

- Aerodynamic drag
- Reliability issue of mechanical beam steering
- Inability to traverse 360° in a continuous rotation

WM07 New Developments for Satellite Communications on the Move

Slide 27 of 126

Patch antenna supporting electronic beam steering

These photographs show the 320 mm x 160 mm prototype L Band patch antenna array, with a Styrofoam ("Blue Foam" cover plate. In this example, we are exciting a linearly polarized signal. Bear in mind the Inmarsat system operates with Right Hand Circularly Polarized (RHCP) signals.

Effect of Styrofoam top cover

There is a very small frequency change (measured at 100 kHz for a 30 mm thick Styrofoam sandwich) when there is a 7.5 mm air gap between the patches and the Styrofoam sheet.

WM07 New Developments for Satellite Communications on the Move

Slide 29 of 126

Filter + Patch antenna combination

WM07 New Developments for Satellite Communications on the Move

Tuning the patch resonant frequency

WM07 New Developments for Satellite Communications on the Move

Slide 31 of 126

Tuning the patch resonant frequency

Left: moving the top resonator patch with respect to the underlying patch enables the tuning of the resonant frequency of the patch antenna.

- Solid line = measured
- Dotted line = trendline

The frequency shift is about 55 MHz for a 5mm top patch movement, providing ample opportunity for frequency trimming of the patch resonant frequency to account for dielectric constant differences.

Conformal Frequency Selective Surface

WM07 New Developments for Satellite Communications on the Move

Slide 33 of 126

An Integrated Simulation Approach for SATCOM Phased Array Design

Dr. Marc Rütschlin

CST AG

marc.ruetschlin@cst.com

How do we design a SATCOM antenna array with fine geometric detail to function correctly on a large aircraft?

WM07 New Developments for Satellite Communications on the Move

Slide 35 of 126

predict large array

performance

SATCOM Array Design Overview

Element design	Array design	Place on platform
		to access a
Of interest:	Of interest:	Of interest:
 Active Element Impedance (AEI) and 	real scanning behaviournon-periodic structure	 effect of platform on antenna
Active Element Pattern (AEP)	effects	 coupling from array to other antennas

Several Simulation Stages

Slide 37	M/MOZ New Developments for Cotallity Communications on the Move	
of 126	wivio/ New Developments for Satellite Communications on the Wove	

One Simulation Environment

Optimization at unit cell level

Slide 39	
of 126	WM07 New Developments for Satellite Communications on the Move

Design with Antenna Magus

Requirements: low profile, broadband, dual-polarised

WM07 New Developments for Satellite Communications on the Move

Simulate single element at unit cell level with FEM solver

WM07 New Developments for Satellite Communications on the Move

Slide 41 of 126

Element Optimization

Goal: Active Element Impedance (AEI) < -10 dB for all scan angles and frequencies of interest!

Active Element Impedance

Slide 43	
of 126	wiviu/ New Developments for Satellite Communications on the Move

Port Isolation

Slide 44 of 126

2. Array Design

Design at full array level

🖮 🚟 Phased Array Antenna
📄 🌆 Opt1 - Unit Cell Design
Unit Cell1
🖃 🔟 Sweep 1-Study Radome Spacing
Unit Cell2 with radome
S Full Array - Reference
🖓 Full Array - Radome
🔊 🔂 Full Array2 - Installed

Slide 45	
of 126	wiviu/ New Developments for Satellite Communications on the Move

Full Array Construction

Create Unit Cell Create Full Array Simulation Project

Unit cell with array layout gives full array geometry

WM07 New Developments for Satellite Communications on the Move

Slide 46 of 126

Array Simulation – No Radome

Simulate full array without approximation with numerically efficient time domain technique

Addition of full curved radome to array

Slide 49	
of 126	WIND/ New Developments for Satellite Communications on the Move

3. Installed Performance

Performance of antenna on aircraft

🗄 – 🛗 Pha	ased Array Antenna
ė 🌽	Opt1 - Unit Cell Design
	S Unit Cell1
i 🔽	Sweep1-Study Radome Spacing
	S Unit Cell2 with radome
S	Full Array - Reference
- 5	Full Array - Centre Element Only
	Full Array - Radome
- 5	Full Array2 - Installed

Slide 50 of 126

Replace antenna detail by equivalent Near Field Source

Simulate with SBR based Asymptotic solver

WM07 New Developments for Satellite Communications on the Move

Slide 53 of 126

Why Mechanically Scanned Antennas Have to Cope with the New Generation of Low Profile Aeronautical Terminals ?

Raimondo Lo Forti

Space Engineering S.p.A.

rudy.loforti@space.it

- Satcom On The Move (OTM) is becoming more and more demanding;
- Historically speaking, mechanically scanning antennas represented the answer to the communications OTM via satellite for a long time (the most important example was the Satcom on the ships);
- Recently the migration of Satcom OTM from the ships to the High Speed Trains and, later on, on-board the aircrafts has shown the needs of having low profile antennas for minimizing the installation issues;
- Since then it seemed that mechanical antennas had no more room due, manly, to its dimensions;
- Therefore a more and more attention was paid to the flat antennas;
- Final step was to think about the possibility of introducing Phased Arrays for solving all these issues;
- We will concentrate our analysis on the airborne satellite antennas.
 Slide 55

Satcom antenna OTM expected characteristics

- Low profile antenna is requested in order to disturb as less as possible the aircraft flight;
- Good RF performance between 0 and 90 degrees;
- Good agility in the beam steering, both in azimuth and elevation;
- Good RF power handling (especially for military use);
- Capability of handling more than one frequency band is a plus;
- Capability of handling both Tx and Rx frequency bands, with the same aperture, is a merit;
- Low weight is very much appreciated;
- Third axis scanning capability is welcome;
- Antenna patterns compliance with ETSI masks is mandatory.
 WM07 New Developments for Satellite Communications on the Move

Slide 56 Of 126

Satcom OTM: Technology evolution step by step

 First example (being used as comparison of conventional reflector antenna mechanically steered)

 The evolution was to use an elliptical aperture for meeting better the foreseen swept volume

- PROS:
 - ✓ Very simple and well consolidated solution (even with 3 axes beam scanning).
- CONTRAS: ✓ Beamwidth too large;
 - ✓ Poor RF performance.
- PROS:
 - ✓ Simple antenna solution;
 - ✓ Quite good RF performance.
- CONTRAS:
 - ✓ Quite large horizontal swept volume;
 - No 3th axis.

WM07 New Developments for Satellite Communications on the Move

Slide 57 Of 126

Satcom OTM: Technology evolution step by step

- The array aperture is subdivided in two sub arrays of patches. The overall antenna height may profit from that.
- Azimuth& elevation mechanically steered

- PROS:
 - ✓ Better RF performance at higher scan angles;
 - ✓ Lighter solution.
- CONTRAS:
 - Phasing network to align RF signals;
 - ✓ Blocking effects.

- The array aperture is subdivided more and more in small subarrays of radiating elements. The overall antenna height may be reduced a lot
- Azimuth and elevation mechanically steered

- PROS:
 - ✓ Better RF performance at higher scan angles.
- CONTRAS:
 - ✓ Complex phasing network to align RF signals;
 - ✓ Less blocking effects;
 - ✓ Poor RF performance at low elevation angles.

Satcom OTM: Technology evolution step by step

- The array is fed by a low losses BFN.
- Azimuth&elevation mechanically steered

- PROS:
 - ✓ Compact solution;
 - ✓ Quite good RF performance. CONTRAS:
 - ✓ No 3rd axis;

- The array is split into two subarray(one for Tx the other for Rx).
- Cross axis beam scanning is electronically implemented
- Azimuth&elevation mechanically steered

- PROS:
 - ✓ Less compact solution;
 - ✓ Quite good RF;
 - performance
 - ✓ Cross axis handling. CONTRAS:
- CUNTRAS:
 - ✓ BFN complexity
 - ✓ Reduced RF performance.

WM07 New Developments for Satellite Communications on the Move

Slide 59 Of 126

Satcom OTM: Technology evolution step by step

- Two flat arrays (one for Tx the other for Rx)
- Azimuth&elevation mechanically steered (elevation scanning, by converting the horizontal scanning into the vertical scanning)
- A flat array feeds a metamaterials layer
- No mechanical movements are foreseen.
- Beam deflection is performed via a "TV screen like" matrix

- PROS:
 - ✓ Very low profile & compact antenna solution;
- CONTRAS:
 - ✓ Poor RF performance at low elevation angles;
 - ✓ No 3rd axis.
- PROS
 - ✓ The most compact and low height solution;
 - ✓ Quite light (?);
 - ✓ Potentially 3 axes.
 - CONTRAS ✓ Poor RF performance at all the scanning angles
- WM07 New Developments for Satellite Communications on the Move

Satcom OTM: in house developments

> YEAR 2004

WM07 New Developments for Satellite Communications on the Move

Slide 61 Of 126

Satcom OTM: in house developments

➢ YEAR 2006

Ku-Band T/R Low-profile Antenna With Polarization Adjustment

Ku-band Tx/Rx antenna: back view

Low losses BFN

Ku-band Tx/Rx antenna: front view

Antenna size: 600 mm X 160 mm X 65 mm

US Patent P500033-US-NP

WM07 New Developments for Satellite Communications on the Move

Slide 62 Of 126

Satcom OTM: in house developments

> YEAR 2008

An example of a full Phased Array approach

- ESA study for a Full Phased Array able to scan the antenna beam within an hemisphere including:
 - design of an active Tx/Rx K_u-band antenna;
 - manufacturing of a 5-active feed demonstrator.
- The system allows:
 - to track the linear polarization
 - to steer beam (+/- 180° el.; 0°/ 360°Az.);
 - To use used both in Tx and Rx through a dual-band self-diplexing patch.

- PROS:
- ✓ No rotating parts;
 - ✓ No key-hole issues.
- CONTRAS:
 - Poor RF performance (especially at low elevation angles) compared with the antenna complexity;
 - Extremely complex and costly.

WM07 New Developments for Satellite Communications on the Move

Slide 63 Of 126

Satcom OTM: in house developments

An example of a full Phased Array approach (cont.)

WM07 New Developments for Satellite Communications on the Move

Slide 64 Of 126

An example of a full phased array approach (cont.)

Requirements	Antenna
Radiation gain pattern over RF band	In agreement with (*)
Operative antenna field of view	0° < φ < 360° 0° < θ < 90°
G/T over RF band, in the entire field of view and for every selectable polarization	> 8 dBK ⁻¹
EIRP over RF band, in the entire field of view	> 43 dBW
Number of beams	1
Cross polarization discrimination (including pointing error)	> 15 dB

PORTAL	THE SASE FLATE

Achieved antenna RF performance

Antenna Diameter	840 mm
Antenna Height	390 mm
Mass	95 Kg
Number of Tile	40
Number of Radiating Element per Tile	36
Total Number of Radiating Element	1440
Tile turned-on per beam	14
Radiating Element turned-on per beam	504

WM07 New Developments for Satellite Communications on the Move

Slide 65 Of 126

Satcom OTM: in house developments

➢ YEAR 2009 Birth of "Beam Waveguide" concept applied to Satcom OTM

Example of guided RF energy through confocal mirros

Slide 67		,
Of 126	wiviu/ New Developments for Satellite Communications on the Move	1

WM07 New Developments for Satellite Communications on the Move

Slide 68 Of 126

Satcom OTM: in house developments

> YEAR 2010

Second example of "Beam Waveguide" concept applied to Satcom OTM: Ku/Ka bands JADA antenna

Rx		
G/T	9.0 dB/K @ 11.7 GHz	
Polarization	Linear H or V	
cross polarization	Better than 15dB	
product	Dealer and Todd	
RF frequency	10.95 GHz to 12.75 GHz	
IF frequency	950 to 2000 MHz	
Тх		
EIRP	45 dBW (with 40W BUC)	
Polarization	Linear H or V	
cross polarization	Bottor than 20dB	
product	Beller than 200B	
RF frequency	13.75 to 14.5 GHz	
IF frequency	950 to 1700 MHz	

Rx	
G/T	9.5 dB/K @ 20.7 GHz
Polarization	Circular RHCP or LHCP
cross polarization product	Better than 25dB
RF frequency	19.20 GHz to 20.20 GHz
IF frequency	950 to 1950 MHz
Тх	
EIRP	50 dBW (with 40W BUC)
Polarization	Circular RHCP or LHCP
cross polarization product	Better than 25dB
RF frequency	30.0 to 31.0 GHz
IF frequency	1000 to 2000 MHz

Two axes Ku/Ka bands antenna with polarization control

WM07 New Developments for Satellite Communications on the Move

Slide 69 Of 126

Satcom OTM: in house developments

Third example of "Beam Waveguide" concept applied to Satcom OTM: Enhanced JADA antenna

radiating aperture dimensions

Mechanical	
Antonno Swont Volumo	Maximum height: 350 mm
Antenna Swept volume	Maximum circular diameter: < 1000 mm

Third example of "Beam Waveguide" concept applied to Satcom OTM: Enlarged JADA antenna (cont.)

Ku-Band		
Rx		
G/T	12.0 dB/K @ 11.7 GHz	
Polarization	Linear H or V	
cross polarization product	Better than 15dB	
RF frequency	10.95 GHz to 12.75 GHz	
IF frequency	950 to 2000 MHz	
Тх		
EIRP	48 dBW (with 40W BUC)	
Polarization	Linear H or V	
cross polarization product	Better than 20dB	
RF frequency	13.75 to 14.5 GHz	
IF frequency	950 to 1700 MHz	

Ka-Band		
Rx		
G/T	13.5 dB/K @ 20.7 GHz	
Polarization	Circular RHCP or LHCP	
cross polarization product	Better than 25dB	
RF frequency	19.20 GHz to 20.20 GHz	
IF frequency	950 to 1950 MHz	
Tx		
EIRP	53 dBW (with 40W BUC)	
Polarization	Circular RHCP or LHCP	
cross polarization product	Better than 25dB	
RF frequency	30.0 to 31.0 GHz	
IF frequency	1000 to 2000 MHz	

Expected antenna RF performance

WM07 New Developments for Satellite Communications on the Move

Slide 71 Of 126

Satcom OTM: in house developments

YEAR 2015

Metamaterial antenna system (developed in parallel) to cope with ground Satcom OTM

- Two flat arrays (one for Tx the other for Rx);
- Azimuth&elevation mechanically steered;
- Elevation beam steering, by rotating a phasing surface.
- PROS:
 - ✓ Compact and simple;
 - ✓ Low losses antenna solution;
 - ✓ Low weight.
- CONTRAS:
 - Poor RF performance at low elevation angles.

Mechanical steering baseline solution

Satcom OTM: in house developments

Coming YEARS

New antenna layouts for 2.0 Space Engineering Satcom OTM

New generation of S.E. antennas for mobile application (especially for aircrafts) should exhibit:

- One single aperture for both Tx & Rx sections;
- Horizontal/vertical/cross axis scanning capabilities;
- Polarization control as simple as possible;
- Low losses between the antenna aperture and the Front-End input port;
- Easy handling of two frequency bands;
- Reduced weight (through the exploitation of carbon fiber/fiber glass/etc. materials);
- Reasonable cost:
- Quite good filling factor (FF is defined as the ratio between the effective antenna aperture and the antenna swept volume)
- Simple antenna layout

S.E. Antenna designer

Slide 7		
Of 12	or Satellite Communications on the Move	WIVIU/ New Developr

Conclusions

- A brief overview has been carried out on the evolution of the antennas for Satcom OTM applications. The main aspects come out from the analysis are the following:
 - \checkmark No room for really flat antennas (either mechanically or electronically steered), in case a good satellite link is requested at very low elevation angles;
 - \checkmark Conformal Arrays, fully electronically steered, might exhibit acceptable RF performance at very low elevation angles. Nevertheless they still exhibit high costs and complexity;
 - Mechanically steered arrays might be a reasonable answer, provided RF BFN does not introduce too many losses;
 - ✓ Mixed solutions (mechanical/electronic) might handle the 3rd axis issue, but reducing its RF performance and increasing the antenna complexity;
 - Simple polarization handling capability is highly recommended;
 - High RF power handling, for military application, would be very much appreciated.

GaN based, passively cooled L-Band SSPA for Avionics

Suat Ayöz

Honeywell International s.r.o., Brno, Czech Republic

suat.ayoz@honeywell.com

WM07 New Developments for Satellite Communications on the Move of 126

Motivation – complex signals

Aeronautical SatCom terminals employ new communication standards

- FANS system based on BGAN (INMARSAT), and ANTARES
- Complex modulated signals with high PAPR (CDMA or QAM)
- Linearity requirements dictate large back-off from the output PA
- Low average efficiency and increased thermal dissipation

- Limited available room and restrictions on air cooling due to noise
 - Air cooling systems also prohibitively expensive
 - Heat sink size reduction required to fit into the limited and highly variable available space
- Existing GaAs or LDMOS technology unable to meet such requirements or are very expensive
- GaN technology allows compact heat sink and passive cooling (high junction temperature → 225 C @ MTTF > 200 years)
- GaN technology allows for very linear amplifier designs when combined with a low cost digital lineariser

WM07 New Developments for Satellite Communications on the Move

Slide 77 of 126

Project Outline

Technology Description

- GaN based, passively cooled linearised L-band SSPA for avionics

Technology Elements

- State-of-the-art GaN device
- Asymmetrical Doherty power amplifier
- Digital Pre-distortion
- Crest Factor Reduction (if needed)
- COTS Transceiver

Program Objectives

- Product CTQs:
- Passive cooling (SWaP reduction flexible installation)
- Power efficiency > 47% (SWaP reduction)
- Supported waveforms: Inmarsat, Antares
 Number of simultaneous carriers: 2 desirable
- Design and implement a demonstrator of a linearised highly efficient Doherty HPA for future avionic SATCOM terminals
- Build up expertise and prove GaN technology for future radio products

Technology Org: Honeywell Advanced Technology Europe ET **Customer:** European Space Agency – ARTES 5.1

Requirements (Electrical)

	REQUIRED	OPTIONAL
Supported Waveforms	Inmarsat	Iridium, Antares
Number of carriers One (100% Duty Cycle)		Two (100% + 10% Duty Cycle)
FrequencyInmarsat: 1626.5-1660.5 MHzAlphasat: 1668-1675 MHz		lridium: 1610-1626.5 MHz Antares: 1646.5 – 1656.5 MHz
Output Power 14.5W (nom.) / 64.6 W (pea		16 W (nom.) / 257 W (peak) (with 10% DC second carrier)
Average PAE for modulated signals	> 47%	
Gain > 45 dB		
Power flexibility > 6dB (PAE spec not imposed)		
Channel mask	Inmarsat / ETSI (EN 301-473)	
EVM < 10% (R20T4.5X – 16QAM)		< 5.5% (FR80T5X64 – 64QAM)
Harmonic rejection	< -70 dBc/(4kHz) over 1.675 to 18 GHz (ARINC 731)	
Return lossInput: < -9.5 dB (ARINC 741)		Input: < -15 dB

Requirements (Physical & Other)

	Requirement	
Dimensions	Footprint < 200 cm ²	
Cooling	Passive	
Reliability	10 ⁶ hrs MTTF	
Operating Temperature (PA Block only)	-55 C to +70 C	
Pressure	9 kPa to 110 kPa (ground to FL55)	
Dissipated power	< 36.5 W	
Environmental tests	Acc. to DO-160G	

- FPGA with DPD implementation (eval. board)
- Digital to RF convertor (eval. board)
- Amplifier = Pre-driver + Driver + Doherty PA in one box
 - With heatsink for passive cooling

SSPA concept – Doherty PA

WP2 - Fast-prototype Doherty amplifier

Fast-prototype MACOM Demo design (2-mm GaN-SiC)

- Customer demo for LTE band
- Optimised for LTE waveform
- Optimised for physical size

WM07 New Developments for Satellite Communications on the Move

Slide 85 of 126

Fast-prototype results

All simulations and measurements performed at 2.7 GHz

Observations:

- ~60% peak efficiency available
- Model does not predict the performance close to saturated power
- Doherty signature behaviour in efficiency not as prominent

	NMSE (dB)	ACPR (dBc)	Efficiency (%)
No DPD	-14.0	-29.8/-29.6	60.0
DPD (meas)	-40.0	-56.6/-56.1	58.7

P_{out} = +38 dBm (6-dB OBO)

	NMSE (dB)	ACPR (dBc)	Efficiency (%)
No DPD	-10.4	-24.7/-24.2	49.7
DPD (meas)	-36.9	-49.6/-48.9	50.0

Slide 87	
of 126	WMU/ New Developments for Satellite Communications on the Move

Dual-carrier INMARSAT

Possible improvements over achieved performance

1. Frequency:

The fast-prototype amplifier operates at 2.7 GHz Device, component and PCB losses would be higher at 2.7 GHz compared to the 1.6 GHz band

2. Intended application:

The fast-prototype amplifier is optimised for operation with LTE signals

3. Harmonic matching and output combiner

For space saving purposes, the fast-prototype amplifier does not use a I/4 transformer at the output combiner (*simulation study confirmed a classical Doherty combiner improves performance*)

Better efficiency expected when the input and output are both presented with correct impedances (for highest PAE) at all harmonics.

Conclusion: The fast-prototype GaN technology is a feasible candidate for Phase II Advanced Concept PA. Above improvements will help achieve and exceed project targets.

WM07 New Developments for Satellite Communications on the Move

Slide 89 of 126

WP2 - Thermal Analysis & Management

Worst case thermal analysis (on an airport apron in a hot country or at FL55) confirms heat sink size of 100 x 200 mm² can cool the amplifier sufficiently –

- → MTTF REQUIREMENT CAN BE MET
- → MAXIMUM SIZE REQUIREMENT CAN BE MET

WM07 New Developments for Satellite Communications on the Move

Phase II and Project Conclusion

- Finalised device model (electrical and thermal) (WP4)
- Advanced concept Doherty PA design that complies with project specifications (WP5)
- Integration with DPD in HW and assembly of final transmitter chain (pre-drivers, driver, PA, DPD etc.) (WP5)
- Full thermal analysis of finalised design (WP5)
- Development of peripheral circuitry and product integration (WP5)
- Test plan and full characterisation (WP5)
- Second iteration if required (WP6)
- Critical evaluation & lessons learned (WP7)
- End of project targeted for Dec 2017

of 126

Advanced Digital Predistortion Techniques for Satellite Communications on the Move

Anding Zhu

University College Dublin, Ireland

anding.zhu@ucd.ie

WM07 New Developments for Satellite Communications on the Move of 126

Outline

- Introduction
- Digital Predistortion (DPD) Principle
- Behavioural Modelling of RF Power Amplifiers
- DPD for L-Band GaN PA for Avionics Terminals
- DPD for Multicarrier DVB S2 TWTA
- Conclusion

System Requirements/Trends

- Future satellite communication systems demand larger capacity

 Higher data rate, wider signal bandwidth
- Tighter integration, smaller sizes, lower weights
- Power efficiency becomes a big concern
 - For wideband multicarrier non-constant envelope signals: back-off efficiency of power amplifier is very poor
 - Large cooling systems result in big size, heavy weight, and wasting energy
- Digital circuits and modern solid-state device technologies have been significantly advanced in the past decades
 - More and more digital in transceiver design
 - SSPA replacing TWTA

WM07 New Developments for Satellite Communications on the Move

Slide 95 of 126

RF Power Amplifiers

- RF power amplifier (PA) is a unit that strengthens the signal to combat losses in transmission by converting DC electric power to added RF output signal power.
- It consumes a high proportion (over 50%) of the total transceiver energy. It is also a complex nonlinear unit which introduces distortion that can severely limit data capacity.
- High PAPR (peak to average power ratio) signals: very poor power efficiency due to power back-off.
- Challenges: design high-efficiency and high-linearity PAs with very wide operating bandwidths.

WM07 New Developments for Satellite Communications on the Move

Slide 96 of 126

Predistortion Principle

- Compensate distortion in RFPA by inverting its nonlinear behaviour.
- The PA can be operated at high efficiency modes without losing linearity.
- Conventional analog predistorters achieve limited performance.
- Digital predistortion (DPD) becomes more popular: low cost/low power digital implementation and high performance.

MANAOZ Neve Developments for Catallity Conservation to a the Mary	Slide 97
wivio/ New Developments for Satellite Communications on the Move	of 126

DPD System Architecture

• Feedback Observation Path

- Acquire information from PA output

Model Extraction Unit

- Find model parameters, can run off-line or occasionally
- Predistorter Unit
 - Real-time signal processing

Modelling Challenges

- Accurate model is crucial.
- Simultaneously count nonlinearities and memory effects.
- Discrete time domain and in complex baseband.
- The model must be simple: easy and low cost digital implementation.
- Linear-in-parameters: linear estimation algorithms can be used for model extraction.

MANAGZ New Developments for Catallity Communications on the Mana	Slide 99
WIVIU/ New Developments for Satellite Communications on the Move	of 126

- Memory Polynomial (MP)
- Generalized Memory Polynomial (GMP)
- Dynamic Deviation Reduction (DDR)

WM07 New Developments for Satellite Communications on the Move

Slide 101 of 126

Cellular Signal Test Example

DPD has been widely deployed in terrestrial cellular mobile base stations

L-Band GaN Doherty PA

- L-band GaN PA for Avionics Terminals
- Carrier Frequency: 1.60 1.67 GHz
- Efficiency: 63-72% @6-dB Back-off
- 75-80% @Saturation
- Output Power: 25Watts

GaN Doherty PA Fast Prototype

WM07 New Developments for Satellite Communications on the Move of 126

	NMSE (dB)	ACPR Upper (dB)	ACPR Lower (dB)	Efficiency (%)
Without DPD	-20.4	-29.8	-29.6	67.9
With DPD (measurement)	-41.5	-63.4	-62.8	67.9
With DPD (simulation)	-70.7	-76.5	-74.9	67.9
				Cliv

WM07 New Developments for Satellite Communications on the Move

Slide 105 of 126

-1

0

Frequency Offset (MHz)

1

2

3

-2

-3

-4

	NMSE (dB)	ACPR Upper (dB)	ACPR Lower (dB)	Efficiency (%)
Without DPD	-19.0	-24.7	-24.2	69.13
With DPD (measurements)	-41.0	-54.7	-55.1	69.05
With DPD (simulation)	-74.7	-74.8	-75.6	69.00

WM07 New Developments for Satellite Communications on the Move

Slide 107 of 126

Multicarrier DVB S2 Signals

- 3-carrier signal, 32-APSK/16-APSK/32-APSK
- 8MBaud symbol rate, roll-off = 0.25
- 36MHz Transponder Bandwidth
- Non-linearized TWTA, DVB-S2 standard with IMUX/OMUX configuration
- End-to-end simulation

Slide 109	W/MOZ New Davide and the Centerline Construction in the Maria
of 126	wivi07 New Developments for Satellite Communications on the Wove

Linearization Performance

WM07 New Developments for Satellite Communications on the Move

Slide 111 of 126

Conclusion

- Future aeronautical communication system design faces new challenges in terms of signal bandwidth, power efficiency, linearity, size/weight, cost, etc.
- Digital predistortion techniques can significantly enhance linearity and enable high power efficiency operation of transmitters.
- Reduce power consumption, enable smaller size, better integration and lower cost.
- Technologies recently developed for terrestrial cellular mobile systems can be transferred to satellite systems with proper modifications.

Millimetre-Wave Technologies for Next Generation Mobile Terminal

Prof. George Goussetis Prof. Savvas Kosmopoulos Heriot-Watt University

g.goussetis@hw.ac.uk

WM07 New Developments for Satellite Communications on the Move of 126

EuMW 2016

MM-wave Satellite Communications

- FSS
- SOTM
- Q/V-band
- Gateway links
- Aeronautical ...?

Advantages

- Bandwidth & throughput
- Smaller apertures

Challenges

- Fading
- Cost

- Propagation and fading beyond 30 GHz
- ACM: Link level analysis, verification and component specification
- Fading: Dual-band terminal architectures
- Front-end integration
- Power amplification
- Passive components
- Packaging
- Beam steering "flat" antenna

Slide 115	
of 126	wivio/ New Developments for Satellite Communications on the Move

Link level evaluation & System design

WM07 New Developments for Satellite Communications on the Move

5lide 116 of 126

Link level evaluation: Testbed verification

WM07 New Developments for Satellite Communications on the Move

Slide 118 of 126

Dual-band terminal and Ku-/Ka- Tx/Tx Diplexer

L- to Ka-band Converter

From AM/AM to IMDs

Ka-band Power combiner

WM07 New Developments for Satellite Communications on the Move

Slide 124 of 126

Packaging

of 126

Innovative antenna solutions

