, Message Passinglnterfacé > ,/ \

\
1

?’ a brief introduction | S .
o 7= =5c N e \ ol ‘
B /// | 4
: _9__‘____—--"—/ J (_l
"ﬂ s BT L ApATZ AR 106 HI'/ "

1 1.3) Pl :r 7 1€ ﬂ imaul s 'é
!.‘/‘ :" ?
A ”
> - .) ’

- 7 ' -
B - - b e . .
‘k—\ £ 'S

na ® Experts in numerical software and
High Performance Computing

» MPI is short for Message-Passing Interface.

» MPI is desighed by a consortium of organisations as a
standard for writing message-passing programs.

» We work with MPI libraries, which are implementations
of the MPI specification.

» There are many versions of the MPI standard

- MPI-3.1 is the latest standard. Several implementations are available, but
not yet universally supported.

- Most mature implementations are against the MPI-2.1 or 2.2 standard.

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Why is MPI the Library of Choice?

MPI is the de-facto standard of parallel programming for
distributed memory systems.

v

v

Portable code

- Implementations exist for most parallel platforms.
+ Free, downloadable implementations available.

Optimal performance

- Considerable effort has been put into optimising the performance of the
library and tuning it to specific hardware platforms and interconnects.

v

+ Such development is ongoing.

v

The standard itself is also continually being refined and
updated.

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

MPI Implementations

» Two widely used open-source implementations

- Use them for studying and development work on your PC/laptop.
- OpenMPI — http://www.open-mpi.org
* MPICH — http://www.mpich.org

» Popular vendor implementations

- Often high-performance on the platforms they are designed for.
- Popular implementations: Intel MPI, Platform (IBM), Cray MPT, etc.

» TIPS
- Because MPI is a standard, your code should work with any implementation.

- In practice, for difficult situations, such as debugging or performance
analysis, trying a different MPI library is often a good idea.

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

MPI Language Bindings

» There are official MPI bindings for C and Fortran.

» A C++ binding was introduced at MPI-2.0, but
deprecated at MPI-2.2 and removed at MPI-3.0.

« C++ programmers should use the C bindings.

» A new Fortran 2008 binding has been added at MPI-3.0,
although not supported universally.

» Third-party supports available for other languages
- Python binding via mpi4py or similar extensions
* R bindings of MPI via Rmpi
» Etc.

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

MPI Code Essentials

» A typical MPI code will have all of the following
essentials elements:

* Including the appropriate header file or module.
- Initialising the MPI environment.

- Getting each MPI process to find out the total number of processes, known
as the size of the global communicator.

- Getting each MPI process to find out its own unique ID, known as its rank.

- Implementing some useful algorithms (normally decompose your problem
based on size and rank, allowing each MPI process to handle a portion of
the global workload).

+ Shutting down the MPI environment.

- We will briefly go through all these steps. After that you
are able to create your first MPI program.

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

The MPI Header File / Module

» To make the MPI defined constants and functions
available to user code.

/* In C or C++, include the header file. */
#1include <mpi.h>

| In Fortran, always use an MPI module 1f one 1is

| available on your system. An MPI-2.0 (or Tlater)

I compliant 1mplementation should provide one.

USE MPI ! Or USE MPI_f08 for the Fortran 2008 binding

| Otherwise, include the Fortran header file.
include 'mpif.h'

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Initialising the MPI Environment

» MPI_Init initialises the MPI environment.

- All MPI codes must contain exactly one call to an initialisation routine.
+ Multi-threaded code may alternatively call MPI_Init_thread.
- Calling most MPI routines before initialisation is a mistake.

/* C and C++ startup routine */

TASSMPESSNAGEE (1Nt # a ngCsHchalte A Nt

/* These are pointers to the arguments to main. It 1s
permitted to pass NULL for both arguments. */

' Fortran startup
SUBROUTINE MPI_INIT(IERROR)
INTEGER :: IERROR

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Finalizing the MPI Environment

» Each process must call MPI_Finalize before it exits.

- The user needs to ensure that all pending communication has completed
before calling it.

+ This routine is responsible for shutting down the MPI environment and claim
back system resourced used by it.

/* C and C++ shut-down routine */
int MPI_Finalize();

| Fortran shut-down
SUBROUTINE MPI_FINALIZE(IERROR)
INTEGER :: IERROR

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Definition of Rank and Size

v

size is the total number of MPI processes.

- This number is normally specified at runtime.

» rank is a unique integer associated with each process,
where 0 <= rank < size.

» With size and rank, it is the programmer’s responsibility
to find a way to decompose the problem so that
different processes perform different tasks or work on
different data.

» Strictly speaking, rank and size should be associated
within a group of processes called a communicator. For
this talk, we work with MPI_COMM_WORLD only.

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Finding out the Size

» The function MPI_Comm_size reports the size of the
group of processes associated with the specified
communicator.

/* C and C++ */
int MPI_Comm_size(MPI_Comm comm, int *size);

| Fortran
SUBROUTINE MPI_COMM_SIZE(COMM, SIZE, IERROR)
INTEGER :: COMM, SIZE, IERROR

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Finding out the Rank

» The function MPI_Comm_rank finds the rank of a

process within the group of processes associated with
the specified communicator.

/* C and C++ */
int MPI_Comm_rank(MPI_Comm comm, int *rank);

| Fortran
SUBROUTINE MPI_COMM_RANK(COMM, RANK, IERROR)
INTEGER :: COMM, RANK, IERROR

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

An MPI C Template

#include <mpi.h>

.

int main(int argc, char **
1nt si1ze, rank;

argv) {

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);

/* the body of the code goes here */

MPI_Finalize();

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

An MPI Fortran Template

PROGRAM basic_MPI_template

USE MPI
IMPLICIT NONE
INTEGER :: 1error, rank, size

CALL MPI_INIT(ierror)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierror)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierror)

| the body of the code goes here

CALL MPI_FINALIZE(ierror)
END PROGRAM basic_MPI_template

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

An MPI Python Example

#!/usr/bin/env python

from mpi4py import MPI

comm = MPI.COMM_WORLD

rank = comm.rank

print "Hello world from rank", rank

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Compiling and Linking MPI Programs

» Use the MPI compiler wrappers

« Normally mpif90 for Fortran, mpicc for C and mpiCC for C++
- Note that MPI is implemented as a standard library
- When building user code, compiler needs ext locate external libraries

* Such information is automatically supplied by the MPI compiler wrappers

» For example, with GNU compiler

gcc test.c -o test # to compile a serial code

mpicc mpitest.c -o mpitest # to compile an MPI code

mpicc —-show mpitest.c -o mpitest

gcc mpitest.c -o mpitest -I/usr/include/openmpi-x86_64 -
pthread -wl,-rpath -wl,/usr/11b64/openmpi/1ib -wl,--
enable-new-dtags -L/usr/11b64/openmpi/1ib -1Imp1

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Running MPI Programs

» Interactive runs

« Mainly during development

« Run job interactively from command line, e.g.
mpirun -np 64 ./name_of_executable -command_line_arguments

» Batch runs #1/bin/bash ~Togin

A sample job script

* Queue jobs on HPC systems #PBS -N name_of_the_MPI_Job

b . . . #PBS -1 select=144
Major job scheduling systems e e e 2T
> PBS, LSF, Slurm #PBS -1 place=exc]

_ . #PBS -A 1213
- Use ajob script to

cd $PBS_O_WORKDIR # job submission directory
* Reserve system resources

Load necessary environment
module Toad mpt

. Utility programs to module Tload intel-compilers-16

* Submit job, check job queue ... # To actually Taunch the parallel job
mpirun -n 72 -ppn 36 ./hello.exe

* Set up runtime environment

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

i e
17p]
Q

=

©
Q
L
-

o
(&
-
L
e

(Vg

|

@
Q.
=
(0
X

LLl
o

R

‘»
o
Q.
=
(@
(&
Q

o

=
(¢
=
@)

()

595 W VL W L L L A L A
W5 W W L W W A WA W W WA W

0N 71717 -,
() .~ R U VL NN WU WA VA O VU S Y
) o

Iiton IS

dependent on algorithm.

(%]
o
o
g
)
O
)
©
=
(q°)
5
©@)
©
+—
(%]
v
o0

g
o}
=
olo}
@
=
3
3
=
(%)
(]
=
>
| .
(<]
(%]
Qo
Co
"
(O}
Q
=
Qo
(<
L
(]
—_
©
=
G
(@]
(%]
(%)
=
(o=
1=
=
o
g0
<
‘©
O
i
(]
S
=
=
Qo
(<
m
=)
(%)
=
(]
O
Qo
=
=
=
Q.
£
(]
O
(]
O
c
©
<
—
]
=
—
]
(O
=
gl
aC

Domain Decomposition Example — Unstructured Mesh

3" party partitioning software
often required

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Functional Decomposition Example

[Atmospheric Model J

I I

Hydrology
Model

I Ocean
Model

[Land Surface Model I—l

A subset of processes responsible for each model

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Messages in MPI

From: source rank S0
Letter # 1234 (tag) <7

The message has:
A type - integer, real, etc.
A count

A location - memory address
Both source and destination
ranks need to provide these

Please send count number data of this type, located at memory address a on the
source rank, to the destination rank and write to memory address b there.

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Sending Data with MPI_Send

» The APl maps to the concept very well, except the
added communicator argument

/* C and C++ */

int MPI_Send(void *buf, int count,
MPI_Datatype datatype, int dest, int tag,
MPI_Comm comm) ;

' Fortran

SUBROUTINE MPI_SEND(BUF, COUNT, DATATYPE, DEST, TAG,
COMM, IERROR)

<type> :: BUF(¥*)

INTEGER :: COUNT, DATATYPE, DEST, TAG, COMM, IERROR

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Receiving Data with MPI_Recv

» The APl maps to the concept very well, except the
added communicator & status arguments

/7* C and Cex 5/
int MPI_Recv(void *buf, int count,
MPI_Datatype datatype, int source, int tag,
MPI_Comm comm, MPI_Status *status);
' Fortran
SUBROUTINE MPI_RECV(BUF, COUNT, DATATYPE, SOURCE, TAG,
COMM, STATUS, IERROR)
<type> :: BUF(¥*)
INTEGER :: COUNT, DATATYPE, SOURCE, TAG, COMM, IERROR
INTEGER, DIMENSION(MPI_STATUS_SIZE) :: STATUS

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Message Passing - C Example

int rank;
MPI_Status status;
friloa T Saqule: PN YL GE]
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
it (rank == 0){
MPI_Send(a, 10, MPI_FLOAT, 1, 0, MPI_COMM_WORLD) ;
¥
else if (rank == 1){
MPI_Recv(b, 10, MPI_FLOAT, 0, 0, MPI_COMM_WORLD,
&status);

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Message Passing - Fortran Example

INTEGER :: rank, 1ierr
INTEGER, DIMENSION(MPI_STATUS_SIZE) :: status
REAL, DIMENSION(10) :: a, b

CALL MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)

IF (rank .EQ. 0) THEN
CALL MPI_SEND(a(l), 10, MPI_REAL, 1, 0, &
MPI_COMM_WORLD, 1err)

ELSE IF (rank .EQ. 1) THEN
CALL MPI_RECV(b(1), 10, MPI_REAL, 0, 0, &
MPI_COMM_WORLD, status, ierr)

END IF

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Blocking vs. Non-blocking Communication

» Blocking

- A blocking communication call will block the execution of the program until
the communication is completed

MPI_Send does not return until the data in the send buffer (i.e. the variable
in the user program) can be safely changed.

* This does not necessarily mean that it’s arrived at its destination.

- MPI_Recv does not return until the data in the receive buffer (i.e. the
variable in the user program) can be safely accessed.

» Non-blocking

« A non-blocking communication call will return immediately.
It is the user’s responsibility to check the completion at a later time.

- This is useful to: avoid deadlock; overlap communication and computation

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Deadlock

Process 0 Process 1

MPI_Recv() MPI_Recv()

oWl

MPI_Send() MPI_Send()

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Non-blocking Communication Example

i Crahk £=%0)4

MPI_Isend(a, 10000000, MPI_FLOAT, 1, tag, comm, &request);
/% Do some computation unrelated to a */

MPI_wait(&request, &status);
}
else if (rank == 1){

MPI_Irecv(a, 10000000, MPI_FLOAT, 0, tag, comm, &request);
/* Do some computation unrelated to a */

MPI_wait(&request, &status);

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Point-to-point vs. Collective Communication

» Point-to-point
- MPI_Send and MPI_Recv are point-to-point communication routines.
- There are exactly two processes involved.

» Collective

Communication involving a group of (2+) processes is called collective.

 In theory, you can implement most collective calls using the basic point-to-
point communication routines.

+ All collective calls must be made by every process in the group associated
with the communicator.

- Some useful collective operations:
* Barrier

* Broadcast, gather/scatter, all-to-all

* Data reduction

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

MPI_Barrier

oWl

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Broadcast

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Data Gathering / Scattering

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

(L
N\ R VA, W, ", " T N R T R

RO TR VEEL . T VI TR

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Reduction

v

Suppose that each process i has computed a number X.
and that the result needed is the sum of these.

v

This global sum is an example of a reduction operation.

v

It combines communication and computation.

v

MPI generalises such operation by

- allowing reductions to proceed element by element on arrays.
- replacing the sum by an arbitrary associative binary operation.

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Advanced MPI Topics

» This short introduction can only cover the very basics of
MPI programming.

» Some of the most useful advanced topics:
+ Groups and communicators
- Derived datatypes

- Cartesian topology
- MPI-IO

» A practical problem is used to demonstrate all these
advanced features.

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

A Common Matrix-like Dataset

Groups and communicators — to treat rows/columns specially

Derived datatypes — to communicate across process boundary more efficiently
- Cartesian topology — to work with neighbouring processes more easily

MPI-10 — to export and post-process distributed data easily

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Derived Datatypes

» We have already seen some pre-defined MPI datatypes.

- User-defined derived datatypes can be useful for:
+ StructuresinC
- Types and variables of non-standard size
- Arrays (in particular those with strided memory pattern)

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Derived Datatypes

Basic datatype

row_type: a derived datatype that is contiguous

col_type: a derived datatype that is strided

Use derived datatypes to easily describe matrix rows and columns.
Derived datatypes, once defined, can be used in communication routines.

CALL MPI_SEND(BUF, 3, MPI_FLOAT, dest ...)
CALL MPI_SEND(BUF, 1, row_type, dest ...)
CALL MPI_SEND(BUF, 1, col_type, dest ...)

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

» MPI-IO allows a single file to be read or written in

parallel by any number of processes.

ST N P R Pt LAl
e ST TR LT 'ff.-@f_fu"
Rl e s Rt

=
.. .~

e AT il i S i !'
fE o]

i

1... e

’%%:4

fi_i

i

e

» It is often the case that a process needs to access
several different portions of a file.

» MPI-IO provides routines to facilitate this.

- e.g. file access patterns described as MPI derived datatypes

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

» There are 100+ MPI-10 routines.

» They are designed very elegantly.

» There are analogies:

- e.g. blocking/non-blocking communication vs. blocking/non-blocking 1O

I communication

SUBROUTINE MPI_RECV (BUF, COUNT, DATATYPE, SOURCE, TAG,
COMM, STATUS, IERROR)

I IO

SUBROUTINE MPI_FILE_WRITE (FH, BUF, COUNT, DATATYPE,
STATUS, IERROR)

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Cartesian Topologies

» In a distributed matrix setting, processes are sitting on a
Cartesian grid.

- Therefore they can be referenced easily than using their global ranks.

Rank=0 Rank=1 Rank=2
Coord=(0,0) Coord=(0,1) Coord=(0,2)
Rank=3 Rank=4 Rank=5
Coord=(1,0) Coord=(1,1) Coord=(1,2)

- Shift operation allows neighbouring processes along process-grid lines to be
easily identified.

- Additional support for periodic boundary condition.

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Further Reading

» The MPI standard documents are available at
http://www.mpi-forum.org

- The specification contains “advice to users” contents.
|t can be bought as a hardback book.

» Gropp, Lusk and Skjellum, “Using MPI: Portable Parallel
Programming with the Message-Passing Interface”,
second edition, The MIT Press.

» Gropp, Lusk and Thakur, “Using MPI-2: Advanced
Features of the Message-Passing Interface”, The MIT
Press.

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com

Experts in High Performance Computing,
Algorithms and Numerical Software Engineering

www.nag.com | blog.nag.com | @NAGtalk

mk'é o T1Y)

-v"‘ Wi

= 2R ! A\ ‘
SO0 00 T SRR o0 VD ' Vil
"ﬁ i T ¢ {'1“"‘[‘1“ A —
v . e:"n"h =|:1]’llxll’l"llﬂlﬂ"l.w L 1E g Ty }g
- e R i L2, 121 IR IO 100181017] 11T _/_ i 7@@]27 [ere

s e Nt ?,/,” f']///gp 4 ’g /3 'Tg p
' ¢) ; L& (T / a7)
« < 2270 7 Z’/’/,%} }ﬂ"ﬂ ;% / g’,’,; 1 7 _,
- 2 2l o 2/45;‘,&7;,?,) é@/’,’ 2 ry . TR "
) v = ’/{ 2 //('{’// //I/,' & F ” 2 . «”
. 4 ol LD
p " : s, /’(- ’(I::‘g/ <« Y67 52!\-; (
N - e 2 - - . ("l w i < y-)
- » > »
¢ o= — "~Q‘ " }I - .
3 — - — ’ ’ :! " - e
¢ s
: = . -~ o */’ ’."
fa s ; p— ';/

v . . ™ "‘p > . >
. - < ’" ‘ ~ L . ‘?
. - ’ = e
nag High Performance Computing Consulting | Numerical Algorithms | So%tware Engin&ng Services | w.nag.com \

