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BIO / INFORMATICS ? 
Computational Biology, BioStatistics,  

Statistical Genetics, Mathematical Biology, … 

• […] 

 

• Bioinformatics 
Pronunciation: /ˌbʌɪəʊˌɪnfəˈmatɪks/ 

plural noun [treated as singular] 

 

 the science of collecting and analysing complex biological data such as genetic codes. 

 

• Bioinformatics i/ˌbaɪ.oʊˌɪnfərˈmætɪks/ is the application of computer science and information 

technology to the field of biology and medicine. Bioinformatics deals with algorithms, databases and 

information systems, web technologies, artificial intelligence and soft computing, information and 

computation theory, software engineering, data mining, image processing, modeling and simulation, 

signal processing, discrete mathematics, control and system theory, circuit theory, and statistics, for 

generating new knowledge of biology and medicine, and improving & discovering new models of 

computation (e.g. DNA computing, neural computing, evolutionary computing, immuno-computing, 

swarm-computing, cellular-computing). 
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Molecular Ecosystems Biology 

Molecular Biology: understanding 

gene regulation in cells – extending 

contexts to tissues 

(microenvironment) and organisms 

(physiology) – but can we connect 

to populations and ecologies?  

China&

Klamath&River,&CA&

From Molecules to Ecologies: a 

grand challenge before us is to link 

genome dynamics to ecosystem 

biology – to understand how gene 

regulatory systems transduce, 

respond to, and ultimately influence 

populations and ecologies 



mesocosm terrarium rhizotron co-culture 

Total molecular-genetic 

control, over-simplified 

Genetically 

defined 

systems 

Defined populations, genetic control 

over some individuals 

Complex ecology with 

many unknowns 

Incisive Realistic 

Coupling multi-scale systems to link 

genome biology to ecosystem dynamics  



Essential cross-cutting enabling technologies 

• We have: 

– CRISPR enables genetic manipulation of previously intractable organisms 

– Glyco-binding-beads and Engineered Phage Libraries enable the targeting of 

individual microbes in complex communities 

– Exposure biology enables the perturbation of metabolic pathways even when 

those pathways are spread across consortia 

– High Performance Computing (HPC) to fit next-generation learning machines 

• We need: 

– Model ecologies: self-sustaining and recapturable systems with defined 

trajectories  

– Phylogenomic reconstructions: models of network evolution to enable the 

translation of results from model systems to natural ecologies 

– Nondestructive measurements: molecular time-courses from individuals and 

consortia 

– Informative Learning Machines: “Open Box” analytical procedures to obtain 

insight from multi-modal panomics datasets 
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Statistical Machine Learning: State of Art 

f(						)≈
Transcriptome	sequencing

Metabolome	Analysis

Select	genes	critical	for	predicting	
metabolic	responses

Sparse,	co-responsive
networks	of	genes

Δ	m/z

Sparse	co-responsive	networks
of	MS/MS	peaks

Identify	
perturbed	
peaks

Association	of	genes	and	
co-expression	networks	

with	changes	in	
metabolomic	profiles
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Complexity & Life 

• 6,000,000 – approximate number of variants 
mapped in the human population 

• 36,000,000,000,000 – approximate number of 
pairs of variants 

• 21,600,000,000,000,000,000,000 – 
approximate number of triplets 

• 1.5 Trillion CPU Hours – a comprehensive 
search over triplets for a complex phenotype 
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Decision Trees 

• Hierarchically structured decision rules 

• Can help us to identify simple rules that predict events 

• Example: predict the price of a bushel of apples as function of 

latitude and longitude in California 

$11 

$13 

Source: 
http://www.stat.cmu.edu/~cshalizi/350/lectures/22/lecture-22.pdf 
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Random Forests 

• As in the apples example, trees generate 

“histogram” approximations of data 

• Averaging across trees “smooths” the histogram 

• Any one tree is 

coarse, but together 

they can quite 

accurate 



iterative Random Forests (iRF)  

An interpretable learning machine 
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X11< 0.7 X3> 0.1 X3< 0.1 

X9< 0.5 
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Sumanta Basu, Bin Yu 
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ENCODE Project 

• Over 11k genome-

wide assays 

• Mostly ChIP-seq, 

DNase-seq, RNA-

seq, CAGE, eCLIP, 

Methyl-seq 

• Concentrated in 

three cell lines: 

K562, HepG2, and 

GM12878 
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• Predict exon inclusion as a function of 

ChIP and eCLIP data 

• Recover and parameterize complex 

interactions through surface mapping 

• Robust recovery of high order 

interactions in simulations 

• iRF decouples the order of 

interactions from the 

computational cost of detection  

Sumanta Basu, Dmitri Pervouchine, Roderic Guigo  

iRF reveals non-linear interactions in RNA processing 

Luco et al., Cell. 2011.  



14 

Interactions between H3K36me3 and RBPs 

Sumanta Basu, Dmitri Pervouchine, Roderic Guigo  

Only four eCLIP’d factors appear to interact with 

H3K36me3 so far: 

• PTBP1 (known) 

• SAFB2 

• U2AF1 

• HNRNPU 

Potential participants in the transduction of this mark  
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Rules for enhancer activity in the early 

Drosophila embryo 

• Rules are and-like for 

activation, and sharper 

than for splicing 

 

• Rules combine activators 

and repressors 

 
Sumanta Basu and Taly Arbel 



Vista Enhancer Database 

Ke Liu, Haiyan Huang, Peter Bickel 

Predict enhancer activity as a function of 

chromatin accessibility, chromatin marks, TF 

binding, and eRNAs 

active enhancer

inactive enhancer

-2 -1 0 1 2 3

Heterogeneity in a single “class” of functional elements 

• In the enhancer challenge, AUROC’s 

were around 0.4 - 0.89 on test sets 

(where 20-50% of enhancers are 

positive) 

• Good, but genome-wide FPRs likely still 

between 50-90%  

• Learning machines rely on spread in the 

active enhancers – subtypes exist 

Heart Enhancers 

+H3k27ac 

-5mC 

-H3k27ac 

+5mC 
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Heterogeneity: 5mC+/-H3K27ac enhancers 

• Classical: Hypomethylated enhancers tend to 

have high levels of H3K27ac 

• Novel: Hypermethylated enhancers tend to have 

low levels of H3K27ac – often below genomic 

background 
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• Different mechanisms may enable the action of 5mC+/-

H3K27ac enhancers, additional assays are needed 

• Test more enhancers, and other assays 

• Need factors with 5mC binding domains ChIP’d & eCLIP’d + 

seq’d & MS/MS’d  
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ACTIVE Enhancers, several tissues 

Ke Liu, Haiyan Huang, Peter Bickel 

ACTIVE Enhancers, several tissues 
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Hypermethylated enhancers in Zebrafish 
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Role of the Microbiome 

Hypotheses: 
 

Microbes are Earth’s 

Biogeochemical Engines 

 

Microbes can be harnessed to 

improve plant productivity and 

stress resistance 

 

 

Microbes can mitigate or 

exacerbate contaminant risks 

and longevity 

 

Host-associated Microbes can 

dictate Metazoan interactions 

with the environment 

Food and Fuel 

Production  

Health and 

Environment 

Carbon 

Management 

Environmental 

Stewardship 

Grand challenges 
 

Can we predict the response of 

Earth’s terrestrial C sink to 

global change? 

 

Can we sustainably supply 

critical nutrients to meet our 

population’s energy and food 

demands? 

 

Can we manage risks to the 

environment as we scale our 

energy and food production? 

 

Can we predict and mitigate 

health impacts of increased 

energy and food demands? 

http://m2b.lbl.gov  

The Microbes to Biomes Initiative 
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Factors that influence robustness and susceptibility to challenges 

Host & Microbial  

Interactions 

Environmental factors  

How can we identify factors that control individual, population, and 

ecosystem susceptibility to environmental challenges? 

Host & Microbial 

Metabolism 

A
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SNP 

Antoine Snijders, Jian-Hua Mao, Gary Karpen, Sue Celniker: http://m2b.lbl.gov  

The Microbes to Biomes: Health 

http://electronics.howstuffworks.com/cell-phone-radiation1.htm
http://www.newliving.net/health-2/health-risks/radiation/
http://m2b.lbl.gov/


Environmental Design 

Age (days) 

Measure immediate and long term host and microbial 
responses to toxicants using ‘omics, imaging, and phenotyping 

Screen 20 environmental toxicants in flies 

Study toxicants with 
the most significant host- 
microbiome interactions 
in pre-pubescent mice 

gnotobiotic 

wild type 

specified 
microbiome wild type 

Fecal : Metagenomics, 
Metatranscriptomics, 
16S classification 
Behavior 

Gut: Histology, 
transcriptome, 
Metagenomics, 
Metatranscriptomics, 
16S classification. 
Blood: metabolites 

Age (wks) 4 5 7 11 15 

Gut: Histology, 
Metagenomics, 
Metatranscriptomics, 
16S classification 
Behavior 

3 5 30 

Screen 3 high-priority toxicants in mice 

Experimental Design 

Antoine Snijders, Jian-Hua Mao, Gary Karpen, Sue Celniker: http://m2b.lbl.gov  

http://m2b.lbl.gov/
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Atrazine induces locomoter phenotypes in OreR flies 

Wild-type Atrazine treated 
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Host response to pesticide exposure 

Genome-wide Transcriptional Response to Atrazine 

• Atrazine induces an 

adaptive response 

associated largely with 

the transport of lipids, 

but is not deadly at 

extremely high doses 

• The fruit fly lacks the 

genes to metabolize 

Atrazine – how is it 

surviving the exposure? 

2/14/2016 https://upload.wikimedia.org/wikipedia/commons/a/a9/Pathway_Atrazine_degradation.svg

https://upload.wikimedia.org/wikipedia/commons/a/a9/Pathway_Atrazine_degradation.svg 1/1
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Ncp1b NCP1 Cholesterol 

trafficking 

1e-6 

FASN2 FASN Fatty Acid 

Synthase 
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hydrolysis  

1e-5 



All major species isolated 

(>95% total microbiome) 

Mapping the basal microbiome of laboratory OreR 

• 1000 new genes with 

complete, single-contig build 

Acetobacter tropicalis 

4MB 

151 KB 

15.6 KB 

Sequenced: 

• L. brevis 

• L. plantarum 

• B. flexus 

• B. kochii 

• E. durans 

• A. trop 

• A. pomorum 

• P. taichungensis 
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Acetobacter 

• Paraquat and 

Atrazine induce the 

collapse of 

Acetobacter in the 

insect gut 

• Atrazine is rapidly 

and completely 

metabolized in the 

host gut, yet still 

induces a 

hyperactive 

phenotype 

Microbiome remodeling during exposure 

Summary of Fecal Metabolomes 



Candidate atrazine metabolizing genes  

from sequenced fly gut microbes 

New members of the Amidohydrolase Protein Superfamily 
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The gut microbiome is protective 
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f(						)≈
Transcriptome	sequencing

Metabolome	Analysis

Select	genes	critical	for	predicting	
metabolic	responses

Sparse,	co-responsive
networks	of	genes

Δ	m/z

Sparse	co-responsive	networks
of	MS/MS	peaks

Identify	
perturbed	
peaks

Association	of	genes	and	
co-expression	networks	

with	changes	in	
metabolomic	profiles

• We need AutoFit 

Dynamics (AFD): By 

2020, it may be 

possible to infer 

dynamics in high-

dimensional systems 

Machine learning to achieve predictive 

molecular ecology by 2022 

• We have iterative Random 

Forests (iRF): Interactions of 

any order at the same 

computational cost as 

pairwise 

Informative Machine Learning Initiative 
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