The continuous demand of increasing train operating speed raised more aerodynamic concerns both in open air and confined spaces such as tunnels. When a train moves in open-air, it generates regions of highly turbulent flow known as slipstream. The slipstream is generally associated with high air velocities and rapidly-changing pressure fields which can create significant problems for passengers on platforms and also for the trackside workers. However, when a train passes a confined space such as a tunnel, additional aerodynamic issues appear, which are different than those in the open air. This can be explained through the underlying phenomena such as the compressibility of the air around high-speed trains due to running in a confined space. This generates pressure transients propagating along the tunnel and radiated from the tunnel exit. The flow inside a tunnel can have different properties if the particular geometry parameters such as the cross section and length of the tunnel vary. Therefore, investigations are required for better understanding of these effects.

This can be explained through the underlying phenomena such as the compressibility of air around the train. The slipstream is generally associated with high air velocities and rapidly-changing pressure fields which can create significant problems for passengers on platforms and also for the trackside workers. However, when a train passes a confined space such as a tunnel, additional aerodynamic issues appear, which are different than those in the open air. This can be explained through the underlying phenomena such as the compressibility of the air around high-speed trains due to running in a confined space. This generates pressure transients propagating along the tunnel and radiated from the tunnel exit. The flow inside a tunnel can have different properties if the particular geometry parameters such as the cross section and length of the tunnel vary. Therefore, investigations are required for better understanding of these effects.

The continuous demand of increasing train operating speed raised more aerodynamic concerns both in open air and confined spaces such as tunnels. When a train moves in open-air, it generates regions of highly turbulent flow known as slipstream. The slipstream is generally associated with high air velocities and rapidly-changing pressure fields which can create significant problems for passengers on platforms and also for the trackside workers. However, when a train passes a confined space such as a tunnel, additional aerodynamic issues appear, which are different than those in the open air. This can be explained through the underlying phenomena such as the compressibility of the air around high-speed trains due to running in a confined space. This generates pressure transients propagating along the tunnel and radiated from the tunnel exit. The flow inside a tunnel can have different properties if the particular geometry parameters such as the cross section and length of the tunnel vary. Therefore, investigations are required for better understanding of these effects.

The continuous demand of increasing train operating speed raised more aerodynamic concerns both in open air and confined spaces such as tunnels. When a train moves in open-air, it generates regions of highly turbulent flow known as slipstream. The slipstream is generally associated with high air velocities and rapidly-changing pressure fields which can create significant problems for passengers on platforms and also for the trackside workers. However, when a train passes a confined space such as a tunnel, additional aerodynamic issues appear, which are different than those in the open air. This can be explained through the underlying phenomena such as the compressibility of the air around high-speed trains due to running in a confined space. This generates pressure transients propagating along the tunnel and radiated from the tunnel exit. The flow inside a tunnel can have different properties if the particular geometry parameters such as the cross section and length of the tunnel vary. Therefore, investigations are required for better understanding of these effects.

The continuous demand of increasing train operating speed raised more aerodynamic concerns both in open air and confined spaces such as tunnels. When a train moves in open-air, it generates regions of highly turbulent flow known as slipstream. The slipstream is generally associated with high air velocities and rapidly-changing pressure fields which can create significant problems for passengers on platforms and also for the trackside workers. However, when a train passes a confined space such as a tunnel, additional aerodynamic issues appear, which are different than those in the open air. This can be explained through the underlying phenomena such as the compressibility of the air around high-speed trains due to running in a confined space. This generates pressure transients propagating along the tunnel and radiated from the tunnel exit. The flow inside a tunnel can have different properties if the particular geometry parameters such as the cross section and length of the tunnel vary. Therefore, investigations are required for better understanding of these effects.

The continuous demand of increasing train operating speed raised more aerodynamic concerns both in open air and confined spaces such as tunnels. When a train moves in open-air, it generates regions of highly turbulent flow known as slipstream. The slipstream is generally associated with high air velocities and rapidly-changing pressure fields which can create significant problems for passengers on platforms and also for the trackside workers. However, when a train passes a confined space such as a tunnel, additional aerodynamic issues appear, which are different than those in the open air. This can be explained through the underlying phenomena such as the compressibility of the air around high-speed trains due to running in a confined space. This generates pressure transients propagating along the tunnel and radiated from the tunnel exit. The flow inside a tunnel can have different properties if the particular geometry parameters such as the cross section and length of the tunnel vary. Therefore, investigations are required for better understanding of these effects.

The continuous demand of increasing train operating speed raised more aerodynamic concerns both in open air and confined spaces such as tunnels. When a train moves in open-air, it generates regions of highly turbulent flow known as slipstream. The slipstream is generally associated with high air velocities and rapidly-changing pressure fields which can create significant problems for passengers on platforms and also for the trackside workers. However, when a train passes a confined space such as a tunnel, additional aerodynamic issues appear, which are different than those in the open air. This can be explained through the underlying phenomena such as the compressibility of the air around high-speed trains due to running in a confined space. This generates pressure transients propagating along the tunnel and radiated from the tunnel exit. The flow inside a tunnel can have different properties if the particular geometry parameters such as the cross section and length of the tunnel vary. Therefore, investigations are required for better understanding of these effects.

The continuous demand of increasing train operating speed raised more aerodynamic concerns both in open air and confined spaces such as tunnels. When a train moves in open-air, it generates regions of highly turbulent flow known as slipstream. The slipstream is generally associated with high air velocities and rapidly-changing pressure fields which can create significant problems for passengers on platforms and also for the trackside workers. However, when a train passes a confined space such as a tunnel, additional aerodynamic issues appear, which are different than those in the open air. This can be explained through the underlying phenomena such as the compressibility of the air around high-speed trains due to running in a confined space. This generates pressure transients propagating along the tunnel and radiated from the tunnel exit. The flow inside a tunnel can have different properties if the particular geometry parameters such as the cross section and length of the tunnel vary. Therefore, investigations are required for better understanding of these effects.

The continuous demand of increasing train operating speed raised more aerodynamic concerns both in open air and confined spaces such as tunnels. When a train moves in open-air, it generates regions of highly turbulent flow known as slipstream. The slipstream is generally associated with high air velocities and rapidly-changing pressure fields which can create significant problems for passengers on platforms and also for the trackside workers. However, when a train passes a confined space such as a tunnel, additional aerodynamic issues appear, which are different than those in the open air. This can be explained through the underlying phenomena such as the compressibility of the air around high-speed trains due to running in a confined space. This generates pressure transients propagating along the tunnel and radiated from the tunnel exit. The flow inside a tunnel can have different properties if the particular geometry parameters such as the cross section and length of the tunnel vary. Therefore, investigations are required for better understanding of these effects.

The continuous demand of increasing train operating speed raised more aerodynamic concerns both in open air and confined spaces such as tunnels. When a train moves in open-air, it generates regions of highly turbulent flow known as slipstream. The slipstream is generally associated with high air velocities and rapidly-changing pressure fields which can create significant problems for passengers on platforms and also for the trackside workers. However, when a train passes a confined space such as a tunnel, additional aerodynamic issues appear, which are different than those in the open air. This can be explained through the underlying phenomena such as the compressibility of the air around high-speed trains due to running in a confined space. This generates pressure transients propagating along the tunnel and radiated from the tunnel exit. The flow inside a tunnel can have different properties if the particular geometry parameters such as the cross section and length of the tunnel vary. Therefore, investigations are required for better understanding of these effects.

The continuous demand of increasing train operating speed raised more aerodynamic concerns both in open air and confined spaces such as tunnels. When a train moves in open-air, it generates regions of highly turbulent flow known as slipstream. The slipstream is generally associated with high air velocities and rapidly-changing pressure fields which can create significant problems for passengers on platforms and also for the trackside workers. However, when a train passes a confined space such as a tunnel, additional aerodynamic issues appear, which are different than those in the open air. This can be explained through the underlying phenomena such as the compressibility of the air around high-speed trains due to running in a confined space. This generates pressure transients propagating along the tunnel and radiated from the tunnel exit. The flow inside a tunnel can have different properties if the particular geometry parameters such as the cross section and length of the tunnel vary. Therefore, investigations are required for better understanding of these effects.

The continuous demand of increasing train operating speed raised more aerodynamic concerns both in open air and confined spaces such as tunnels. When a train moves in open-air, it generates regions of highly turbulent flow known as slipstream. The slipstream is generally associated with high air velocities and rapidly-changing pressure fields which can create significant problems for passengers on platforms and also for the trackside workers. However, when a train passes a confined space such as a tunnel, additional aerodynamic issues appear, which are different than those in the open air. This can be explained through the underlying phenomena such as the compressibility of the air around high-speed trains due to running in a confined space. This generates pressure transients propagating along the tunnel and radiated from the tunnel exit. The flow inside a tunnel can have different properties if the particular geometry parameters such as the cross section and length of the tunnel vary. Therefore, investigations are required for better understanding of these effects.