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ABSTRACT
We numerically study thin flow channels of superconducting vortex matter in a periodic confining potential caused by pinned vortices on the channel edges. The

channel width is varied in order to study the transition between single and double (bifurcated) chain configurations of flowing vortices. At very low temperatures, thermal
fluctuations are sufficiently weak enough to maintain the single chain configuration for long time scales above the critical channel width. The order parameter shows
hysteresis in the single-double-single transition path if the chain doesn’t thermalise quickly enough. For the undriven system, we are able to examine the energetics of the
mechanism to understand why the single chain appears metastable.
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Pinned and flowing vortices are represented by empty and filled circles,
respectively. The additional width of the channel is controlled by ∆y, and the
lower channel off-set is controlled by ∆x. The central dashed line is defined as
y = 0. We define N to be the number of vortices to fill each unit cell once, and only
once, in the diagram above. Additional interstitial vortices are counted using n. In
the Abrikosov lattice, b0 = a0

√
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We can build similar soft matter systems using other types of particles, for
example: Wigner crystals [1], colloidal suspensions, and hard disks [2].

Other repulsive potentials can generate similar systems, e.g. exp
(
−r2

)
, 1/r, or

exp (−r)/r.

NUMERICAL TECHNIQUES
The vortex-vortex interaction is a modified Bessel function. If we rescale

a0 → 1, we can approximate the potential using a cut-off length, rc [3].
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We simulate the system using Runge-Kutta algorithms to solve the overdamped
Langevin equation of motion [4].

η
dri
dt

=
∑
j

Fvortices (|ri − rj |) + Fdrive + χ (t)

ORDER PARAMETER
The amplitude parameter characterises the single and bifurcated state.

Ay =

√∑N+n
i y2i
N + n

For the single chain, each yi = 0, so Ay = 0. For the bifurcated chain, Ay > 0.

CHAIN STRUCTURES
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Single chains are 1D for commensurate values of ∆x.
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For ∆y ≥ (∆y)c, the single chain bifurcates and forms a zigzag structure be-
tween nearest neighbours.

SIMULATING TEMPERATURE
We implement an Andersen thermostat [5] to act as a heat bath for the vortices.

This will maintain a thermal distribution using a Markov process.

The stochastic term in the Langevin equation gives a Gaussian distribution of
thermal energies with two random uniformly generated numbers, (u1, u2) ∈ (0, 1].

χ(t) =

√
2δtkB
ηp

Θ(p− qi)
√
−2 log (u1) (x̂ cos (2πu2) + ŷ sin (2πu2)) (1)

ENERGETIC SAMPLING
We can find the ground state of the highly commensurate undriven system,

to numerical precision, by sampling over different possible values of Ay and ∆y.
At widths greater than (∆y)c the energetic minimum is at a non-zero value of Ay
indicating the transition has occurred.

These results indicate the single chain becomes unstable beyond the
transition point. If thermal fluctuations are sufficiently small, the transition will
occur on a long time scale. In the complete absence of fluctuations, the single chain
will never bifurcate.
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MOLECULAR DYNAMICS RESULTS
Results show hysteresis is present in zero-temperature simulations. This indi-

cates the transition occurs on a long time scale.
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