

Quantifying the influence of wind advection on the urban heat island for an improvement of a climate change adaptation planning tool

BEAR conference 15/12/2014

Bassett R., Cai X., Chapman L., Heaviside C., Thornes, J.E., Grayson N.

School of Geography, Earth and Environmental Sciences
University of Birmingham

Urban Heat Islands

Cities are warmer than surrounding rural areas

Urban Heat Islands

- Night-time
- Differences in heating / cooling rates
- Related to city size and function
- Synoptic weather limiting factor

- Annual mean temperature may only be 1 or 2°C warmer in a city, but could be up to 7°C under the right conditions
- Urban cool islands may form during the day (however much smaller in intensity)

Urban Heat Islands

Alteration of the surface energy balance through:

- Radiation trapping (reduced SVF)
- Changes in albedo / thermal properties
- Increased surface area
- Increased roughness
- Lack of Vegetation
- Anthropogenic heat

Soil temperature vs. albedo (top)

SVF (left)

(Oke, 1987)

Air pollution

UHI measurement in Birmingham

Tomlinson et al. 2013

Influence of wind advection on the UHI

- □ Recent studies (Bohnenstengel et al. 2011; Heaviside et al. 2014) demonstrate that the UHI pattern can be influenced by wind advection, even at low speeds
- □ Aim: Under what weather conditions and to what extent does wind advection affect the UHI pattern?
- ☐ Aim: Can a transferable methodology be developed to correct static UHI fields?

Influence of wind advection on the UHI

Two methods:

(1) Observations

(2) BlueBEAR simulations - Weather Research& Forecasting Model (WRF)

HiTemp network of sensors

Hypothetical advection diagram (adapted from Heaviside et al. 2014)

- [A] Typical mean UHI with all wind directions considered
- [B] Downwind temperatures warm and upwind temperatures cool with a horizontal wind
- [C] Difference or advected component

□ NE/SW: Downwind – Upwind mean temperature difference

Weather Research & Forecasting Model (WRF) □ Community NWP model Operational forecasting and atmospheric research applications ■ WRF can be used over a range of scales ☐ Physics options to represent radiation, surface, boundary layer, cloud and precipitation processes □ Parameterisation options for urban areas V3.6 installed on BlueBEAR

Domain	01	02	03	04
Resolution	36km	12km	3km	1km
Grid cells (Horizontal x	50x41	52x29	69x65	82x79
Vertical)				

Model set up

- > ERA-40 initial conditions
- Specific urban land use

Urban parameterisation in WRF

i. SLAB scheme (Liu et al. 2006)

COMPLEXIT

- ii. Single-layer UCM(Kusaka et al. 2001)
- iii. Multi-layer UCM: BEP (Martilli et al. 2002)

BEP Schematic (Chen et al. 2011)

- Sophisticated 3D urban representation
- Radiation shadowing, reflecting and trapping improves the urban energy budget, and urban canopy thermal structure
- Vertical and horizontal effects of buildings on momentum better represents vertical wind profiles in the urban canyon
- Direct integration with the boundary layer

 Model run for an 8-day period (12th -20th July 2013)

 Simulations take approximately 7 hours using 32 processors. Total CPU time for the run is approximately 225 hours

WRF domain 4 2m Temperature (°C) 15th July 00:00AM

RMSE (Root Mean Square Error) for urban simulations at Paradise Circus (Figure 5) of 1.3°C

WRF model seems to under predict daytime rural temperatures and does not cool down as much as the observations

(2) BlueBEAR simulations - Directions

 Initial simulation shows the WRF model is able to capture urban temperatures

 However fine-tuning specifically for Birmingham is still required

 A series of sensitivity tests will be conducted, e.g. changing initial conditions such as the soil moisture

(2) BlueBEAR simulations - Directions

 A series of idealised simulations will be run to further determine the advected heat contribution when the complex nature of an urban area is simplified

 Develop a generic methodology of correcting UHI patterns from local-equilibrium models (no grid cell transport of heat and momentum)

Conclusions

Observational analysis indicates a strong advection signal in Birmingham

 WRF model has been run on BlueBEAR, further simulations are planned

 Impact generated through the improvement of a UHI mapping tool

Thank you

References

- Chen, F., Kusaka, H., Bornstein, R., et al. (2011) The integrated WRF/urban modelling system: development, evaluation, and applications to urban environmental problems. International Journal of Climatology, 31: (2): 273-288.
- Heaviside C, Cai X-M, Vardoulakis S. 2014 The effects of horizontal advection on the urban heat island in Birmingham and the West Midlands, United Kingdom during a heatwave. Q. J. R. Meteorol. Soc.
- HiTemp. High Density Measurements within the Urban Environment http://goo.gl/CMha6h
- Martilli A, Clappier A, Rotach MW. 2002. An urban surface exchange parameterisation for mesoscale models. Boundary-Layer Meteorology 104: 261–304.
- Oke TR. 1987. Boundary Layer Climates. Methuen: London.

Email: rxb549@bham.ac.uk