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10 CSEF Crystallisation

* Important in food processing == freeze-drying
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Highly concentrated systems
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[1] Roos and Karel (1991), International Journal of Food Science and Technology, 26, pp. 553-566.



&”UCSEF Modelling
* Liquid into solid == Phase change Moving boundary problem

Kinetics:
{ Primary[Z]] DSC experiments crystal fraction, T
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[2] Chégnimonhan et al. (2010). International Journal of Refrigeration 33, 1559-1568.
[3] Crank (1984). Free and moving boundary problems, Clarendon Press, Oxford, UK.



/ | CSEF Primary crystallisation: model

Fdh

* @Governing equations
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e External boundary conditions
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* Continuous material properties
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@CSEF Primary crystallisation: model

* Crystallisation kinetics
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[4] Mdlek, J. (2000). Thermochimica Acta 335, 239-253.
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(ﬂ“ CSEF Primary crystallisation: results

e 20-70% sucrose solution

e FEM in COMSOL

e 101 nodes, tol=10"°, L= 1cm
 Airfractione =10, 0.1, 0.2, 0.3]
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* @Governing equations

—=v(DVe,), i=ls rlcp%—i V(kVT), i=ls

* Moving front boundary conditions
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e External boundary conditions
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[5] Ross, Y. (2005). Phase transitions in Foods. Academic Press, London.



C CSEF Secondary crystallisation: results
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e 60% sucrose solution
* FEM+ALE (adaptive mesh) in COMSOL
e 101 nodes, tol=10"°, R=1 cm
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Conclusions

* First approach to modelling of high concentrated
systems

* Overall good agreement between models and
experiments:
- seeding model overestimates growth rates.

- aeration affects heat transfer delaying ice
crystal formation.
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