

Operational models for ice crystal formation in highly concentrated systems

<u>E. López-Quiroga</u>, P.J. Fryer, O. Gouseti, R. Wang and S. Bakalis School of Chemical Engineering, University of Birmingham, UK.

Crystallisation

Important in food processing
 — freeze-drying
 & freezing

Determinant in creating
 microstructure properties
 & texture

Crystallisation

Nucleation

Growth

Primary

Secondary (seeding)

Highly concentrated systems

- Experimentally challenging
- Available water?
- Difficult crystallisation

Modelling:

understanding and control (Quality, process-ability)

Liquid into solid — Phase change

Moving boundary problem

Primary^[2]

Kinetics:

DSC experiments

Heat transfer: Fourier+ phase change heat

crystal fraction, T

Fixed domain

Secondary^[3]

Mass transfer:

Fick

Heat transfer:

Fourier

Stefan problem Front-tracking

T, C, freezing front

^[2] Chégnimonhan et al. (2010). International Journal of Refrigeration 33, 1559-1568.

^[3] Crank (1984). Free and moving boundary problems, Clarendon Press, Oxford, UK.

Primary crystallisation: model

Governing equations

$$\Gamma_{m}C_{p_{m}}\frac{\partial T_{m}}{\partial t} = \nabla\left(k_{m}\nabla T_{m}\right) + \Gamma_{s}DH \xrightarrow{\partial \partial}$$
Crystal fraction

External boundary conditions

$$T_s(0,t) = T_c < T_{freezing}; \frac{\P T_l}{\P r}(L,t) = 0$$

Continuous material properties

Air fraction
$$k_{m} = ek_{air} + (1 - e)(ak_{s} + [1 - a]k_{l})$$

$$C_{p_{m}} = eC_{p_{air}} + (1 - e)(aC_{p_{s}} + [1 - a]C_{p_{l}})$$

$$\Gamma_{m} = e\Gamma_{air} + (1 - e)(a\Gamma_{s} + [1 - a]\Gamma_{l})$$

Primary crystallisation: model

Crystallisation kinetics

α - Ice crystal fraction

Non-isothermal DSC thermogram for the 60% (w/w) sucrose solution

Crystallisation rate for the 60% (w/w) sucrose solution RMSE = 0.001945

Primary crystallisation: results

- 20-70% sucrose solution
- FEM in COMSOL
- 101 nodes, tol=10⁻⁶, L= 1cm
- Air fraction $\varepsilon = [0, 0.1, 0.2, 0.3]$

Crystal fraction the for the % 60 non-aerated sample (solid), and the aerated system with air fractions ϵ =0.1 (dashed), ϵ =0.2 (dasheddot) and ϵ =0.3 (dot)

Air bubble size

Effect of product formulation and aeration on the mean ice crystal size (μm) .

Secondary crystallisation: experiments

Secondary crystallisation: model

Governing equations

$$\frac{\partial c_i}{\partial t} = \nabla \left(D_i \nabla c_i \right), \quad i = l, s \qquad \qquad \Gamma_i C_{p_i} \frac{\partial T_i}{\partial t} = \nabla \left(k_i \nabla T_i \right), \quad i = l, s$$

Moving front boundary conditions

$$\left[c_{|S(t)^{+}} - c_{|S(t)^{-}}\right] \frac{\partial S}{\partial t} = D_{l} \frac{\partial c}{\partial x}\Big|_{S(t)^{+}} - D_{s} \frac{\partial c}{\partial x}\Big|_{S(t)^{-}}$$

Freezing depression [5]

$$DH \Gamma_{s} \frac{\partial S}{\partial t} = -k_{l} \frac{\partial T}{\partial x} \bigg|_{S(t)^{+}} + k_{s} \frac{\partial T}{\partial x} \bigg|_{S(t)^{-}} ; T_{i} \left(S(t), t \right) \neq T_{f}^{*} - DT$$

External boundary conditions

$$T_{s}\left(0,t\right) = T_{c} < T_{i}\left(S(t),t\right); \quad \frac{\P T_{l}}{\P r}\left(R,t\right) = 0 \qquad c_{s}\left(0,t\right) = c_{seed}; \quad \frac{\P c_{l}}{\P r}\left(R,t\right) = 0$$

Secondary crystallisation: results

- 60% sucrose solution
- FEM+ALE (adaptive mesh) in COMSOL
- 101 nodes, tol=10⁻⁶, R=1 cm

Temperature distribution along the sample during the seeding simulation with $T_c = -20$ °C.

Comparison of experimental (o) and simulated (x) growth crystal rates for different cooling conditions

Conclusions

- First approach to modelling of high concentrated systems
- Overall good agreement between models and experiments:
 - seeding model overestimates growth rates.
 - aeration affects heat transfer delaying ice crystal formation.

Acknowledgements:

The authors acknowledge financial support received from EPSRC (grant no. EP/K011820/1).

