Phase contrast image analysis for cell counting of epithelial monolayers

Rachel Flight

PSIBS & School of Dentistry

Supervisors: G. Landini, I. Styles, M. Milward, R. Shelton and P. Cooper

List of contents

- Background and motivation
- 2. Segmenting cells using morphological operators
- 3. Removing erroneous segmentations
- 4. Application and validation

Keratinocytes in the oral mucosa

- Hard palate and gums
 - Protects underlying tissues
 - Continuity breaches lead to problems
- Want to characterise cell behaviour
 - Causes of disease
 - Response to treatments

http://upload.wikimedia.org/wikipedia/commons/1/11/Oral_mucosa.p

Cell counting

- Haemocytometer
 - Simple ✓
 - Destructive *
 - High operator error *

http://www.homebrewtalk.com/f12/heady-topper-can-you-clone-390082/index46.html

Cell counting

- Phase contrast microscope images
 - Non-destructive and stainfree ✓
 - Potential to offer more information than just cell number
 - Phase contrast microscopy delivers challenges to image analysis ...

Cell segmentation

Counting cells from binary image

Ideally, number of binary regions = number of cells

- Low density images suffer from incorrectly segmented "noise" regions
- These will cause erroneous cell counts

Removing erroneous segmentations

- Calculate morphological and greyscale properties of binary regions
- 2. Reduce features using principal component analysis
- 3. Label regions using k-means clustering (k=2)

Discard errors – remaining cells = cell count!

Generationg of growth curves

Image at multiple time points to generate growth curves

Thank you

Any questions?

