Parallel Genetic Algorithms for the Structural Characterisation of Nanoalloys

Jack Davis
School of Chemistry
University of Birmingham

Birmingham Cluster Genetic Algorithm

- The Birmingham Cluster Genetic Algorithm (BCGA) is a genetic algorithm for the structural characterisation of nanoalloys.
- A GA is search method based on the principles of natural selection, sharing key terminology - Generation, Mutation, offspring etc.
- The BCGA includes local minimisation with each step simplifying the search.

"Stepped Surface"

Nanoalloys

- Metallic nanoparticles composed of two or more metallic elements.
- Potential optical, electronic and catalytic applications.
- Structural characterisation is an essential step towards understanding these properties.

Operations

Daven and Ho Crossover

Mutation

BCGA-DFT

- Local minimisation carried out directly at the density functional theory level.
- Allows the BCGA to capture size-specific effects commonly seen in small clusters, otherwise missed with potentials.
- Hugely expensive, only possibly for 10 atom or less sized clusters.

Parallelisation

- How can we study larger clusters?
- The BCGA is intrinsically parallelisable as local minimisations have no interdependence.
- Direct MPI parallisation is not possible. We would not be able run DFT codes in parallel alongside the GA.

Database Method

- Pool GA methodology insures efficiency within a parallel scheme.
- The pool is updated whenever a lower energy structure is found.
- The pool of structures is kept within a text file. This allows multiple instances of the code access to the structures.

Au_{20}

- The pool/database methodology has been benchmarked and applied to Au₂₀.
- The tetrahedral (T_d) structure of Au_{20} has been predicted by both theory and experiment.
- The pool-BCGA successfully finds this as the global minimum.

Davis, J. Phy. Chem. A, 2014, 114.

Conclusions & Future Work

- Continue to test the code on a variety of systems.
- More mutation schemes.
- Ligand and surface optimisation.
- Implementation of a an SQL database.

Acknowledgements

- Roy Johnston.
- A. Shayeghi.
- Johnston Group.
- School of Chemistry
- Archer, Minerva and Bluebear HPCs.

