Global Optimisation of Hydrated Sulfate Clusters

Lewis Smeeton

University of Birmingham School of Chemistry

15th December, 2014

- 1 Introduction
 - The Hofmeister Series
 - Hydrated Sulfate Clusters
- 2 Methodology
 - Modelling Hydrated Sulfate Clusters
 - Exploring the Potential Energy Surface
- 3 Results
- 4 Summary
 - Future Work

Introduction

The Hofmeister Series

Hofmeister series ranks the relative effectiveness of anions or cations on a wide range of phenomena.

lons can be characterised as being either;

- **kosmotropes** $(SO_4^{2-}, NH_4^+) \rightarrow$ Increased surface tension, decreased protein solubility, increased protein stability, ...
- chaotropes (SCN⁻, Guanidinium⁺) → Decreased surface tension, increased protein solubility, decreased protein stability, ...

Hofmeister, Arch. Exp. Pathol. Parmacol., 1887, 24, 247-260

The Hofmeister Series continued

Chemical origins of the series are unclear. There is evidence supporting **both** direct ion-protein interaction **and** long-range effects of ion on solvent structure.

Hofmeister, *Arch. Exp. Pathol. Parmacol.*, **1887**, *24*, 247-260 Kunz *et al*, *Curr. Opin. Colloid. In.*, **2004**, *9*, 1-18

Why are we Interested in Hydrated Sulfate Clusters?

Long-range solvent effects in $SO_4^{2-}(H_2O)_n$ can be investigated experimentally using Infrared Photodissociation (IRPD) spectroscopy. IRPD spectra of size selected $SO_4^{2-}(H_2O)_n$ clusters suggest that dangling OH bonds appear around $n \geq 43$ water molecules.

Ensemble average IRPD spectra of $SO_4^{2-}(H_2O)_n$ with $n \le 80$ at 130K.

Why are we Interested in Hydrated Sulfate Clusters? continued

In contrast: Some water molecules at the surface of bulk solutions and in pure water clusters are oriented so that a hydrogen atom is protruding \rightarrow is a dangling OH.

TIP4P $(H_2O)_{10}$ GM. Note \rightarrow Plenty of dangling OH bonds

Williams et al, JACS, 2010, 132, 8248-8249

Ensemble average IRPD spectra of $SO_4^{2-}(H_2O)_n$ with $n \le 80$ at 130K.

Aims of Study

Can simulation detect the size-dependent appearance of dangling OH bonds in hydrated sulfate clusters?

Methodology

Computational Methodology

Methodology

Detect size-dependent appearance of dangling OH bonds by searching for low energy minima on the Potential Energy Surface (PES) of the $SO_4^{2-}(H_2O)_n$ cluster.

To do this we need;

- 1 A way to model the $SO_4^{2-}(H_2O)_n$ PES.
- 2 A method to explore the PES.

Modelling Hydrated Sulfate Clusters

$$U = \sum_{i} \sum_{j} \left\{ \frac{q_{i}q_{j}}{r_{ij}} + 4\varepsilon \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^{6} \right] \right\}$$

U = interaction energy

 r_{ii} = distance between non-bonded atoms

 q_i = partial charge on atom

 $\sigma, \varepsilon =$ Lennard-Jones parameters

$$U = \sum_{i} \sum_{j} \left\{ \frac{q_{i}q_{j}}{r_{ij}} + 4\varepsilon \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^{6} \right] \right\}$$

Sulfate Anion Parameters

S-O bond length = 1.49Å

O-S-O bond angle = 109.5°

Atom	q _i / e	σ / Å	ε / kcal mol $^{-1}$
Sulfur	+2.4	3.55	0.25
Oxygen	-1.1	3.15	0.25

Modelling Hydrated Sulfate Clusters

Model Parameters: Water

$$U = \sum_{i} \sum_{j} \left\{ \frac{q_{i}q_{j}}{r_{ij}} + 4\varepsilon \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^{6} \right] \right\}$$

TIP4P parameters

O-H bond length = 0.9572 Å

H-O-H bond angle = 104.52°

Lone pair pseudo-atom lies 0.15 Å along H–O–H bond angle bisector.

Atom	q _i / e	σ/Å	ε / kcal mol ⁻¹
Hydrogen	+0.52	0.0	0.0
Oxygen	0.0	3.15	0.155
Lone Pair	-1.04	0.0	0.0

A TIP4P water.

Jorgensen et al, J. Chem. Phys., 1983, 79, 926-935

Exploring the Potential Energy Surface

Basin-Hopping Monte Carlo Algorithm

In order to search the PES for low-energy minima, we used a Basin-Hopping algorithm;

- I Start at an initial local minimum with position \mathbf{x}_i and energy E_i
- Take a random step in configuration space
- 3 Quench to a new local minimum with position \mathbf{x}_i and energy E_i
- 4 Accept step according to Metropolis criterion

$$p(i \to j) = \begin{cases} 1 & E_j \le E_i \\ e^{-(E_j - E_i)/T} & E_j > E_i \end{cases}$$

5 Repeat

Chakrabarti et al, Phys. Chem. Chem. Phys., 2009, 11,1970-1976 Wales DJ, GMIN, A program for basin-hopping global optimisation

Results

Experiment and theory suggests that for n < 3, $SO_4^{2-}(H_2O)_n$ is electronically unstable

Wang et al, J. Chem. Phys, **2000**, 113, 10837 Rudolph et al, J. Phys. Chem. A, **2001**, 105, 905-912

n: Number of water molecules

n = 12

-265.63 kcal mol-1

n: Number of water molecules

Highlighted: Dangling OH bond

 $-299.90 \text{ kcal mol}^{-1}$

n = 17-349.07 kcal mol⁻¹

-317.94 kcal mol⁻¹

-367.01 kcal mol⁻¹

n: Number of water molecules

Highlighted: Dangling OH bond

Dangling OH bonds detected at n = 43, 45 and 47

Counting Dangling OH bonds

Boltzmann-weighted mean number of dangling OH bonds per cluster, \overline{t} .

Disconnectivity Graph of $SO_4^{2-}(H_2O)_{12}$

335 Minima. 390 Transition States.

Energy Scale: 1 kcal mol⁻¹

Smeeton et al, J. Comput. Chem, 2014, 35, 1481-90

Summary

Summary

- The Hofmeister series is a well characterised phenomenon, but with an (as yet) undetermined chemical origin.
- The long-range effect of an ion on water structure is a possible explanation for the Hofmeister series.
- IRPD spectroscopy of hydrated sulfate ions suggests that the dangling OH bonds observed in bulk water are inhibited by the patterning of the H-bond network by the sulfate ion, and only appear above a critical size of ≈ 43 water molecules.
- Rigid-body potential results agree with DFT calculations.
- Simulation results suggest that protruding H atoms appear at $n \ge 43$ water atoms.

Future Work

- Begin searching at the DFT level using the GA.
- Investigate CIO₄ → similar structure, opposite end of Hofmeister series (John Hey, UoB).
- Calculate IR spectra of low energy structures

Acknowledgements

- Prof. Roy Johnston
- Dr. Mark Oakley
- Dr. Sridhar Neelamraju
- Dr. Dwaipayan Chakrabarti
- The Wales Group (Cambridge)
- Prof. Evan Williams and Dr. Sven Heiles (U.C. Berkeley)
- The Johnston Group
- BlueBear, Apocrita and ARCHER
- EPSRC Programme Grant
 EP/I001352/1: Simulation of Self
 Assembly

Johnston Group circa 2012

Thank you for your attention!

Experiment: Methodology

Schematic of a Fourier-transform ion cyclotron resonance mass spectrometer

- Ions are generated at the electrospray ionization (ESI) source and transferred into a Penning cell.
- Clusters are size selected using SWIFT isolation.
- Blackbody infrared radiative dissociation (BIRD) rate constant is measured
- Same size selected clusters are radiated with IR light of a given wavelength and an IR dissociation rate constant is measured.

Comparison with Experiment for $SO_4^{2-}(H_2O)_6$

n: Number of water molecules, m: Energetic Ordering of Minima

Bush et al, JACS, 2007, 129, 2220-2221

IRPD spectra from experiment and theory.

Energy per Water Molecule

Bulk TIP4P: $U(n)/n = -12.9 \text{ kcal mol}^{-1}$

Central Difference Approximation

$$\Delta_2 U = \frac{1}{2} (U(n+1) + U(n-1)) - U(n)$$

Mean Hydrogen Bond Length

 r_{OH}^{ww} = OH—H Mean Distance, r_{OH}^{ws} = SO—H Mean Distance,

Starting point for low energy structures for $n \ge 20$?

- Particularly stable structure for n = 21
- $\Delta E = 2.32 \text{ kcal mol}^{-1} \text{ lower than next isomer}$
- Typically $\Delta E \approx 0.1 \text{ kcal mol}^{-1}$

