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Abstract 

In this paper, we aim to solve the system of equations governing linear elasticity in parallel using 

domain decomposition. Through a non-overlapping decomposition of the domain, our approach aims 

to target the resulting interface problem, allowing for the parallel computation of solutions in an 

efficient manner. As a major application of our work, we apply our results to the field of topology 

optimization, where typical solvers require repeated solutions of linear elasticity problems resulting 

from the use of a Picard approach. 

1 Introduction 

Consider a solid elastic body occupying an open and connected domain Ω ⊂ �� with Lipschitz 

boundary	�Ω � �Ω� ∪ �Ω
, where clamping and traction are imposed on �Ω�	and �Ω
		respectively. 

Under the application of both body forces �:	Ω ⟶ �� and boundary tractions �:	�Ω
 ⟶ ��, the 

material is subject to deformation so that a given reference point � of the initial undeformed material 

is translated to the vector �� � � � ���� of the deformed material, with � denoting the displacement. 

Through the assumption of linearly elastic material behaviour, the governing equations for u 

correspond to the following mixed boundary value problem 

 

   			�� ≔ �� ∙ ���� � �  in Ω,      (1a) 

                                  	���� � �: ���� in Ω, (1b) 

                               � � 0      on �Ω�, (1c) 

                    ���� ∙ � � �       on �Ω
. (1d) 

In the above, the strain caused as a result of the displacements � is characterized by the symmetric 

linearised strain tensor  

                                       

 
!"#��� � 1

2&��"�'# � ��#�'"(. 
In the above,	�  corresponds to the unit outward pointing normal vector on �Ω and � ≔ ���� denotes 

the fourth order elasticity tensor, describing the elastic stiffness of Ω as a result of the load placed 

upon it.  

We will consider the case where our body consists of one or more isotropic materials (i.e: 

rotational and directional independence). Equation (1b) describing Hooke’s Law can be written as  

 *��� � 2+	!��� � ,-	./0!���12-, 
where 2- represents the identity matrix of appropriate size, tr(A) denotes the trace of a matrix A and 

both + and ,-	correspond to Lamé constants defined in the usual manner 

!��� � 3����4",#�1� , 
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with �5 6 0	corresponding to Young’s modulus and �1 7 8 7 9
:  the Poisson ratio. We now look to 

apply domain decomposition to the problem (1). To do this, we divide our domain Ω into ; 

nonoverlapping subdomains Ω" with local boundaries �Ω" and outer unit normals	� ". We denote by Г 

the resulting skeletal interface Г �∪"=9
 Г" where Г" ≔ �Ω"\�Ω, and by 2 ≔ 	Ω?\Г the set of interior  

nodes, with �|AB ≕ �". Assuming that the restriction of �" to components of the skeletal interface �"|ГB  
is known, problem (1) is equivalent to the following set of subproblems 

where D � 1,… ,;. By writing �" � �"9 � �":,	we look to describe an appropriate interface operator 

that will allow problems to be decoupled and thus solved strictly on subdomains in parallel. Through 

the definition of matrix extension operators F" that map interface data to relevant subdomains via 

�": � F",, the system (2) can be decoupled into the following 2; � 1	subproblems  

 

 

 

 

 

 

 

 

 

 

 

The associated weak form to problem (3b) is referred to as the Steklov-Poincaré equation, where the 

so-called Steklov-Poincaré pseudo-differential operator 	G ∶ IJ ⟶ IJ� 	is defined in the following 

manner (Turner, 2014) 

 

 

where		,, K ∊ IJ and ,|ГB ≕ ,", K|ГB ≕ K". The space IJ is chosen to be a suitable fractional Sobolev   

space of index M based on the boundary conditions of the problem, dependent on the intersection of Г 

with �Ω (Quarteroni & Valli, 1999, Toselli & Widlund, 2005). 

    

 ��" � �" in Ω",   

 		�" � 0 on �Ω�	∩	�Ω",     

(2) 
  ���"� ∙ � " � �"										 on �Ω
 	∩	�Ω", 

 			�" � ," on Г",    

N�,, K� � 〈G,, K〉 ≔ 	QRS ���F",�	 ∙ � "�ГB
K	TNU ≕




"=9
Q〈G",", K"〉



"=9
, 

+ ≔ �5
2�1 � 8�	,	 ,- ≔ 8�5

�1 � 8��1 � 28�	. 

    

 ��"9 � �"							 in Ω",   

 		�"9 � 0							  on �Ω�	∩	�Ω",    

(3a) 
  	�0�"91 ∙ � " � �"																			 on �Ω
 	∩	�Ω", 

 		�"9 � 0							 on Г",    
 

 Q��F",� 	 ∙ � " �



"=9
� Q�0�"91 	 ∙ � "




"=9
 

 

 

on Г, 
 

(3b) 

 
 

 ��": � 0							                   in Ω",   

 				�": � 0									 on �Ω�	∩	�Ω",    

(3c) 
  		�0�":1 ∙ � " � 0																					 on �Ω
 	∩	�Ω", 

 				�": � ,"									 on Г",    
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2 Matrix Formulation 

Through a finite element discretisation of the weak formulation, it can be shown that the discrete 

formulation to the original problem (1) requires the solution of a matrix-vector system (Turner, 2014). 

By distributing nodes based on their location within the domain, we can view this system as follows 

VW � XVYY VYГVГY VГГZ [WYWГ\ � X]Y]ГZ � ],    

(4)  

 

where 

In comparison, the corresponding matrix formulations for each of the discrete weak formulations to 

the problems presented in (2) can be written down as 

VYYWY9 � ]Y ,  (6a) 

            GWГ � ]Г � VГYWY9, �G � VГГ � VГYVYŶ_VГY� (6b) 

										VYYWY: � �VYГWГ,  (6c) 

with global solution W � �WY9, `�a � �WY:, WГ�a . In the above, the matrix	G corresponds to the Schur 

complement, and so the discretisation of the decoupled problem (2) can be viewed as a Schur 

complement approach to the discretisation of the global problem (1). Using (4) and (5), we are able to 

view (6) in terms of 2; � 1	subproblems in the following way 

VYBYBWYB9 � ]YB , D � 1,… ,; (7a) 

            GWГ � ]Г � VГYBWYB9 ,  (7b) 

										VYBYBWYB: � �VYBГWГ, D � 1,… ,; (7c) 

We therefore look to solve (4) by exploiting the potential for parallelisation present in (7). 

3 Preconditioning 

The systems we expect to solve will typically be both sparse and large scale, due to the expected 

fineness of the finite element discretization required in modern design processes, allowing for the 

computation of resolute solutions. This is of particular importance for domains containing sharp 

jumps, occurring for instance due to predefined fixed or void regions. Therefore, it is appropriate to 

consider iterative solution techniques when solving systems of the form (4). For our problem, we will 

consider GMRES (Saad & Schultz, 1986) for reasons to be described below.  

In order to avoid the direct construction and application of the Schur complement matrix, and to 

improve the spectral properties of the system matrix, we seek an appropriate preconditioner for the 

system (4). Through the following choice of b, we see that 

b � [VYY VYГ0 G \ ,																											Vb^_ � & 2-YY 0
VГcVYŶ_ 2-ГГ(. 

The minimum polynomial of Vb^_ is �, � 1�� ,		suggesting that iterative solution methods such as 

GMRES will converge in at most T iterations (Ipsen, 2002). Based on this, we propose to 

precondition from the right with an approximation bd of b as follows 

VYY � ⨁D�1; VYBYB , 
   

  W � �WY , WГ� ∊ �f=fghfГ 	.  

(5) 
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Vbd^_Wi 	� ],																						Wi � bdW, 
where 

bd � XVYY VYГ0 Gj Z,																						bd^_ � XVYŶ_ 0
0 2-ГГZ&2-YY �VYГ0 2-ГГ (X2-YY 0

0 Gj^_Z , 
with Gj representing an approximation to the discrete Steklov-Poincaré operator. We therefore seek a 

representation of Gj that is not only practical to invert but can also be seen to provide an appropriate 

preconditioning strategy for the resulting interface problem.  

The form of Gj	chosen is based on work in (Arioli & Loghin, 2009), where discrete norm 

representations for projections of the interpolation spaces IJ	onto suitable finite dimensional 

subspaces are described and analysed. Discrete norms of the form 

FJ � k � k�k^_l�9mJ, M ∊ n0,1o, (8) 

are shown to be equivalent to their continuous counterparts on IJ, where k	and l	denote the mass 

and Laplacian matrices respectively assembled on the interface Г. One particular example corresponds 

to M � 1/2, which is shown in (Arioli & Loghin, 2009) to adhere to the same coercivity and 

continuity bounds as the discrete Steklov-Poincaré operator, leading to mesh independent 

performance of GMRES. The norms presented in (8) can be shown to be spectrally equivalent to 

FqJ � k�k^_l�9mJ,	 
Both of the above can be applied component-wise to a system, suggesting an appropriate form of Gj as 

FrJ � ⨁1TFqJ. 
 

(9) 

From the above, it is clear that fractional powers of matrices must be determined in order to apply the 

discrete norms. For relatively small problems, this can be achieved through direct methods such as a 

generalised eigenvalue decomposition. However, the complexity involved is s��Гt�	suggesting instead 

the use of iterative approaches for larger problems. In (Arioli & Loghin, 2009), approximations 

through the use of truncated Lanczos and inverse Lanczos algorithms are described, and will also be 

employed within this work through the use of flexible GMRES (Saad, 1993) to account for the 

changing nature of the preconditioner.  

4 Results 

We present various results in this section to illustrate our approach in practice. It should be noted that 

while certain examples involve symmetric system matrices, our choice of non-symmetric 

preconditioner suggests GMRES as an appropriate Krylov solver. 

The test problem considered involves a cantilever beam over the 2D domain Ω � �0,2� u⨯ �0,1�, 
with downward force � � 0.75, and outward traction � � 1.	The domain will be clamped on the right 

hand side through the application of homogeneous Dirichlet conditions on the relevant boundary. An 

illustration of the deflection as well as a pictorial example of a division of the domain (into 16 

subdomains) is provided in Figure 1.  

As discussed in the previous section, iterative approaches will be used for the application of FrJ. For 

this work, it was found that the inverse Lanczos approach delivered the most promising results, 

largely due to the relatively small number of basis vectors required to apply the discrete norms. 
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Table 1 illustrates our results for differing mesh parameters y and subdomains. The column labelled 

Gj � 2- illustrates results for both test problems in the absence of interface preconditioning. By reading 

this column from top to bottom (for each problem), we observe a logarithmic dependence on the 

number of GMRES iterations for increasing mesh parameters. Reading this column from left to right 

also suggests a logarithmic dependence on the number of subdomains. 

In comparison, the column labelled Gj � FrJ of the table provides results with the interface 

preconditioner as discussed in (9). Here, it can be seen that the number of iterations are independent 

of the chosen mesh parameter. Whilst there is a logarithmic dependence on the number of iterations 

for an increasing number of subdomains, a direct comparison with the column labelled Gj � 2- suggests 

that our preconditioning strategy provides significant savings in the number of iterations required for 

convergence. 

The final column labelled Gj � Frz{a illustrates results for selected values of theta based on testing. It 

was found that the recorded values were able to provide improved results over the other two columns, 

suggesting that different values of theta are able to provide a closer approximation to the decay of the 

associated Steklov-Poincaré operator.  

 

 

 

 

 

 

 

In order to observe the computational benefits of our method, we look to provide rough estimates in 

order to gauge how our derived approach will perform in a parallel environment. Due to the non-

overlapping nature of our approach, all subdomain solves can be carried out in parallel. As mentioned 

previously, the main issue surrounds the solution to the resulting interface problem. Within each 

application of our preconditioner to this problem, we are required to invert the discrete interface 

Laplacian. This issue is present in the Lanczos process, and also in the subsequent generalised 

eigenvalue decomposition that follows. Due to the structure of this matrix, these inversions can lead to 

a computational bottleneck for an increasing number of subdomains, and so we would like to consider 

an iterative approach to alleviate this issue.  

] 

Figure 1: Original decomposed undeformed layout (left) 

and deformed layout (right). Location of clamping and 

traction illustrated by cyan and black nodes, respectively. 

 

Table 1: Results for the test problem. Tolerance of GMRES set at 10m|. 

 Gj � 2- Gj � FrJ Gj � Frz{a 

# Domains 4 16 64 4 16 64 4 16 64 

M - - - 0.5 0.5 0.5 0.5 0.6 0.7 

y � 1/32 28 47 68 12 18 27 12 17 22 

       1/64 41 66 96 12 19 27 12 18 23 

         1/128 59 93 137 12 19 27 12 19 24 
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The structure of the involved matrix suggests conjugate gradient as a suitable alternative, coupled 

with an appropriate preconditioning strategy (PCG). In this work, we propose to precondition by 

using the relevant contributions of l restricted to Г" , with the cross points removed to enable 

construction in parallel. The parallel CPU time taken for each GMRES iteration can then be realised 

by dividing the number of PCG iterations multiplied by the CPU time taken to apply the 

preconditioner by the total number of faces involved in the construction of	Г.  By adding this 

contribution to the CPU time taken for one parallel subdomain solve, we calculate the total CPU time 

by multiplying the result to the total number of GMRES iterations required to achieve convergence.  

The results for the investigation are displayed in Table 2 below, where CPU times (in seconds) are 

provided for differing mesh and subdomain sizes. A Linux machine with an Intel® Core™ i7 CPU 

870 @ 2.93 GHz with 8 cores was used to obtain the data. The bracketed numbers in the table indicate 

the total number of GMRES iterations required to achieve convergence.  

 

 

  

 

 

 

 

 

 

From the table, it can be seen that for relatively coarse meshes, we do not see a significant enough 

decrease in the CPU time to warrant the use of parallelism. This behaviour can be attributed to the 

computational complexity of sparse matrix inversion (s��:��, � is the bandwidth) for relatively small 

values of	�, and also the efficiency of the backslash command in MATLAB. However, notable 

savings in CPU time equating to roughly factor 4 can be seen for finer meshes. These figures are 

encouraging, as they suggest that our approach is capable of significant speedup through the use of 

parallel architecture when compared directly to solving the problem globally on a single processor. 

After collating the results in Table 2, a general increase was noted in the number of GMRES iterations 

when compared directly to the figures obtained in Table 1. The reason for this can be attributed to the 

use of inner PCG iterations. In particular, a logarithmic dependence on the mesh parameter was 

observed for cases involving smaller numbers of subdomains. However, the deterioration can be seen 

as an acceptable compromise, as the results for larger meshes suggest the use of an increasing number 

of subdomains for improved performance. It should be noted that the results obtained above were 

done so with a relatively coarse tolerance for PCG of 10m�. 

It should not be expected that continual speedup can be gained through the use of an increasing 

number of subdomains, as certain factors such as inter-processor communication between each of the 

three steps will begin to play an important role. Therefore, in terms of a regular subdivision, this 

would suggest an optimal decomposition of the domain based on the mesh parameter, and also 

possibly other contributing factors relating to computer hardware.   

Table 2: Total CPU times (seconds) anticipated through the use of parallel 

computing. 

 Gj � Frz{a 

# Domains 4 16 64 256 

M 0.5 0.6 0.7 0.75 

y � 1/16 0.0169  0.0168  0.0176  0.0254  

        1/32 0.0635  0.0273  0.0199  0.0232  

        1/64 0.4455  0.1238  0.0384  0.0238  

          1/128 3.8716  1.0804  0.2529  0.0623  

          1/256 50.2476  13.2858  3.3204  0.7295  
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5 Topology Optimization 

As an application of our findings, we will describe how our work can be incorporated into commonly 

used solvers from problems arising in topology optimization. The problem we consider here is the so-

called Variable Thickness Sheet problem (Bendsøe & Sigmund, 2003:p.54-57), which can be 

described mathematically using finite elements by the following nonlinear optimization problem  

   

In the above, the �-vector of nodal displacement values W � W��� denotes the solution to the 

elasticity equations, with ] ∈ �f representing the corresponding discretisation of the load linear form. 

The density � ∈ �� is subject to upper and lower bounds � and � respectively, with the volume of 

the body being denoted by �. Additionally, V��� represents the finite element stiffness matrix for the 

elasticity equations, with each V", D � 1,… ,�  denoting elemental stiffness matrices.  

By considering the method of Lagrange multipliers, minima to (10) are obtained through a nonlinear 

system of equations. The nonlinearities can be dealt with using a number of commonly used 

approaches. For instance, one could consider the use of interior point methods (Hoppe & Petrova, 

2004). The fairly standard solution technique used by the community involves the consideration of 

fixed point type update schemes for an initial guess for the density in the following way 

1. Finite Element Analysis (FEA) – solve equations of linear elasticity. 

2. Density update – e.g.: OC (Bendsøe & Sigmund, 2003), MMA (Svanberg, 2002). 

3. Check for convergence. If not satisfied, rerun 1 and 2 using updated density. 

  

It can be expected that a reasonably large number of fixed point iterations are required to obtain a 

suitable final design. The bulk of computational effort will be concentrated on the Finite Element 

Analysis step, namely the repeated process of obtaining updated displacement variables through the 

use of the equations of linear elasticity (Borrvall & Petersson, 2001). Therefore, we propose to apply 

our preconditioning strategy as discussed in Section 3 to this problem coupled with the fairly 

straightforward Optimality Criteria (OC) method for the density update. No attempt will be made here 

to carry out Step 2 above in parallel; however (Borrvall & Petersson, 2001) describe an appropriate 

implementation using the Method of Moving Asymptotes (MMA). 

In Table 3, results are provided illustrating the performance of our approach for the cantilever beam 

problem. The results were obtained using an adaptive tolerance for GMRES based on successive 

compliance values. The total number of fixed point iterations are given, along with the average 

number of GMRES iterations per fixed point step (bracketed). Whilst the number of fixed point 

iterations appears to increase for finer meshes, the average number of GMRES iterations remains 

roughly constant. Whilst we still see a logarithmic dependence on the average number of GMRES 

iterations for an increasing number of subdomains, the fixed point iterations remain roughly constant. 

 ���W,�              ]aW  
 

 subject	to:    V���W � ],   

  V��� � Q �"V",�
"=9  

    

(10) 

  Q �" � �,�
"=9  

  

  � � �" � �, D � 1,… ,�.  
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Future work involves validation of our approach on a parallel machine, as well as consideration of 

further problems (possibly to include 3D domains) and alternative solution methods to try to solve 

topology optimization problems completely in parallel. We expect our approach to adapt well in 

parallel, with potential speedup for 3D problems of factor 8 anticipated. 
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Table 3: Results for the cantilever beam problem solved using our                           

preconditioning strategy for the FEA coupled with the OC method for the density 

update. 

# Domains 4 16 64 256 

M 0.5 0.6 0.7 0.75 

y � 1/16 10 (10)  10 (18)  10 (33)  10 (56)  

        1/32 17 (11)  17 (18)  17 (34)  19 (54)  

        1/64 23 (11) 23 (18)  24 (32)  27 (54)  

          1/128 29 (12)  30 (17)  32 (31)  35 (52)  

          1/256 33 (13)  36 (17)  37 (31)  41 (49)  
 


