Black holes, gravitational waves, and the BEARs

Davide Gerosa

University of Birmingham

September 14th, 2020 BEAR PGR Conference Birmingham, UK

Institute for Gravitational Wave Astronomy d.gerosa@bham.ac.uk — www.davidegerosa.com

About me

What do we know about the Universe?

Image Credit: NASA, ESA, Hubble, I Processing & Copyright: Domingo Pes

What do we actually see?

Can we use gravity?

Light vs. gravity

Electromagnetic radiation

- Charged particles, mainly electrons
- Strongly coupled: easy to detect, but also easily scattered
- Conservation of charge: no monopole
- **Dipole** radiation

Gravitational radiation

- Cumulative **mass** and momentum distribution
- Very weakly coupled: hard to detect, but travel unaffected!
- Conservation of mass and momentum: no monopole, no dipole
- Quadrupole radiation

... and cosmology tells us 95% of the mass-energy content of the Universe has no charge!

Ripples in the fabric of spacetime

 $G_{\mu
u} = 8\pi T_{\mu
u}$ Einstein equations $g_{\mu
u} = \eta_{\mu
u} + h_{\mu
u}$...linearized

Mass quadrupole
$$Q_{jk} = \int \rho x_j x_k \, \mathrm{d}^3 x$$

GW propagation
$$\Box \bar{h}_{\mu\nu} = 0$$

 $h_{ij}^{\rm TT}(t,z) = \begin{pmatrix} h_+ & h_{\times} & 0 \\ h_{\times} & -h_+ & 0 \\ 0 & 0 & 0 \end{pmatrix} \cos \left[\omega \left(t - \frac{z}{c} \right) \right]$

Equivalence principle: measure tidal forces

GW emission $h_{jk} = \frac{2}{r} \frac{d^2 Q_{jk}}{dt^2}$ mass velocity Mv^2 ΔL measurement strain $h \sim \frac{11}{r} \sim \frac{1}{L} \frac{1}{\text{detector}}$ distance **Binaries are natural emitters** Binary cars? Binary black holes! $M \sim 10^3 \mathrm{Kg}$ $M \sim 10 M_{\odot} \sim 10^{31} \mathrm{Kg}$ $v \sim 0.1c$ $v \sim 1000 \,\mathrm{Km/h}$ on a 1 km track $r \sim 100 \,\mathrm{Mpc}$ $h \sim 10^{-21}$ $r \sim \lambda \sim R_{\text{Earth}}$ $h \sim 10^{-42}$

GW signals from BH mergers

- Frequency gradually increases during the **inspiral**
- Merger of two BHs is one of the most energetic events in the Universe
- Direct signal from highly-dynamic strongfield gravity
- BHs have no hair: final remnant has to dissipate all properties but mass and spin (ringdown)

We need templates!

Lasers to detect gravity

LIGO and Virgo on Google Maps

LIGO Washington

It all begun with GW150914

The gold rush

- A third GW detector is the only reasonable way to do this
- Time coincidence with gamma rays and fast communication
- Still some 50 galaxies... Swope +10.9 h

2017 Nobel Prize

"for decisive contributions to the LIGO detector and the observation of gravitational waves"

K. Thorne **R.** Weiss **B.** Barish Caltech Caltech

Just passing by...

Credits: My hometown's newspaper

Can BHs really make it?

Relativity alone cannot explain the LIGO events! We need some **astrophysics!**

Have we been together for so long?

Bayes: the man

$P(\theta|d) = \frac{P(d|\theta) \ p(\theta)}{\int P(d|\theta) \ p(\theta)} \int P(\theta|d,\beta) = \frac{P(d|\theta) \ p(\theta|\beta)}{\int P(d|\theta) \ p(\theta|\beta)}$

Parameters: describe single events. Masses, spins, redshifts, eccentricity, etc Enter the likelihood

Hyperparameters: describe the population Common envelope efficiency, cluster hardening, SN kicks, etc Enter the prior

Odds ratio

$$\mathcal{O}_{12} = \frac{P(\theta|d,\beta_1) \ p(\beta_1)}{P(\theta|d,\beta_2) \ p(\beta_2)}$$

Hierarchical framework:

 $P(\beta|\theta, d) = \frac{P(\theta|d, \beta)p(\beta)}{\int \dots}$

Do it for real: ingredients

- A population synthesis code
- 2. Design a training bank. Space filling algorithms

Latin hypercubes

3. Some form of data compression

Principal component analysis

Do it for real: ingredients

4. A powerful interpolation scheme

Gaussian Process Regression

5. Likelihood with selection effects, measurements errors Loredo 2004, Mandel+ 2019

$$p(\lambda, N|d) \propto \pi(\lambda) N(\lambda)^{N_{\text{obs}}} \exp\left[-N(\lambda) \int d\theta \, p_{\text{det}}(\theta) p_{\text{pop}}(\theta|\lambda)\right] \prod_{i=1}^{N_{\text{obs}}} \int d\theta \, p_i(\theta|d) \frac{p_{\text{pop}}(\theta|\lambda)}{\pi(\theta)}$$

marginalize over N: $p(\lambda|d) \propto \pi(\lambda) \prod_{i=1}^{N_{obs}} \frac{\int d\theta \, p_{pop}(\theta|\lambda) p_i(\theta|d) / \pi(\theta)}{\int d\theta \, p_{pop}(\theta|\lambda) p_{det}(\theta)}$

Proof of principle

Interpolating predictions by Stevenson+2017 along metallicity

Custom simulation design

- 125 sims: custom-made BSE pop-synth runs for training Hurley, Tout, Pols 2002. Lamberts+ 2016
- 2 parameters: chirp mass and redshift
- 3 hyperparameters: metallicity, common envelope, SN kicks

Pipeline prototyped on BlueBEAR and Athena. Stay tuned! Mould, **DG**+, in prep

Wong, **DG**+, in prep

Need to know what we are missing

Unbiassed inference requires accurate modelling of selection effects

Very first Al model was developed on BlueBEAR!

Goes beyond common single-detector approximation and fully consider the network response

Need to know what we are missing

Current inference biassed in specific region of the parameter space.

If future events are there...

Listening to the Universe

Black holes, gravitational waves, and the BEARs

Davide Gerosa

University of Birmingham

September 14th, 2020 BEAR PGR Conference Birmingham, UK

Institute for Gravitational Wave Astronomy d.gerosa@bham.ac.uk — www.davidegerosa.com