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What do we know about the Universe?

Planets Stars
GalaxiesThe Universe…



What do we actually see?



Can we use gravity?



Light  vs.  gravity

• Charged particles, mainly electrons 
• Strongly coupled: easy to detect, 

but also easily scattered 
• Conservation of charge: no monopole  
• Dipole radiation

• Cumulative mass and momentum 
distribution 

• Very weakly coupled: hard to detect, 
but travel unaffected! 

• Conservation of mass and momentum: 
no monopole, no dipole 

• Quadrupole radiation

… and cosmology tells us 95% of the mass-energy content of the Universe has no charge!

Electromagnetic radiation Gravitational radiation 



Ripples in the fabric of spacetime
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Summarizing, the Lorenz gauge imposes 4 conditions that allow to reduce the
10 independent components of the 4 × 4 symmetric tensor hµν to 6 independent
components. Note that we also have the condition ∂µT µν = 0, which is the
conservation of the energy-momentum tensor of the matter in linearized theory.
By contrast in the full theory T µν

;ν = 0.

2.3. Transverse-traceless gauge

We want to study the propagation of GWs once they have been generated. We
set Tµν = 0 in Eq. (2.24) and obtain the wave equation in vacuum

!hµν = 0 . (2.25)

GWs propagate at the speed of light. Within the Lorenz gauge we can always
consider coordinate transformations such that !ξµ = 0. The trace-reverse tensor
transforms as h′

µν = hµν + ξµν with ξµν = ηµν ∂ρξρ − ξµ,ν − ξν,µ. Using
!ξµν = 0, we can subtract 4 of the 6 components of hµν . More specifically, we
can choose ξ0 such that h = 0 and ξi such that hi0 = 0, thus ∂0h00 = 0. The
GW being a time-dependent field, we can set h00 = 0. We denote the field hij

which satisfies the following transverse and traceless gauge conditions,

h00 = 0 , h0i = 0 , ∂ih
ij = 0 , hii = 0 , (2.26)

the transverse-traceless tensor hTT
ij . Note that for a single plane wave with wave

vector k and propagation direction n = k/k, the transversality condition reduces
to ni hTT

ij = 0. Without loosing in generality, we can assume that the plane wave
propagates along the z-axis, thus

hTT
ij (t, z) =




h+ h× 0
h× −h+ 0
0 0 0



 cos
[
ω

(
t − z

c

)]
, (2.27)

where we indicate with h+ and h× the two independent polarization states. Fol-
lowing [31, 35], we can introduce the projector operator Pij(n) = δij − ni nj ,
which satisfies the conditions

Pij = Pji , ni Pij = 0 , Pij P jk = P k
i , Pii = 2 , (2.28)

and the Λ-operator

Λij kl(n) = Pik Pjl −
1

2
Pij Pkl , (2.29)

and obtain the TT field for a generic propagation direction

hTT
ij = Λij,kl hkl , (2.30)Equivalence principle: measure tidal forces
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localize the source by a factor of 1/SNR better than this.
For long-lived sources, however, a single antenna synthesizes many antennas by observing the

source at di↵erent points along its orbit around the sun. The baseline for such observations is 2 AU,
so that, for a source emitting radiation at 1 kHz, the resolution is as good as �✓ = 10�6 rad, which
is smaller than an arcsecond.

For space-based detectors orbiting the sun, like LISA, the baseline is again 2 AU, but the
observing frequency is some five or six orders of magnitude lower, so the basic resolution is only of
order 1 radian. However, as we shall see later, some of the sources that a space-based detector will
observe have huge amplitude SNRs in the range of SNR ⇠ 103 – 104, which improves the resolution
to arcminute accuracies in the best cases.

2.4 Amplitude of gravitational waves – the quadrupole approximation

The Einstein equations are too di�cult to solve analytically in the generic case of a strongly gravi-
tating source to compute the luminosity and amplitude of gravitational waves from an astronomical
source. We will discuss numerical solutions later; the most powerful available analytic approach is
called the post-Newtonian approximation scheme. This approximation is suited to gravitationally-
bound systems, which constitute the majority of expected sources. In this scheme [79, 169], solu-
tions are expanded in the small parameter (v/c)2, where v is the typical dynamical speed inside the
system. Because of the virial theorem, the dimensionless Newtonian gravitational potential �/c2

is of the same order, so that the expansion scheme links orders in the expanded metric with those
in the expanded source terms. The lowest-order post-Newtonian approximation for the emitted
radiation is the quadrupole formula, and it depends only on the density (⇢) and velocity fields
of the Newtonian system. If we define the spatial tensor Qjk, the second moment of the mass
distribution, by the equation

Qjk =
Z

⇢xjxk d3x, (1)

then the amplitude of the emitted gravitational wave is, at lowest order, the three-tensor

hjk =
2
r

d2Qjk

dt2
. (2)

This is to be interpreted as a linearized gravitational wave in the distant almost-flat geometry far
from the source, in a coordinate system (gauge) called the Lorentz gauge.

2.4.1 Wave amplitudes and polarization in TT-gauge

A useful specialization of the Lorentz gauge is the TT-gauge, which is a comoving coordinate
system: free particles remain at constant coordinate locations, even as their proper separations
change. To get the TT-amplitude of a wave traveling outwards from its source, project the tensor
in Equation (2) perpendicular to its direction of travel and remove the trace of the projected
tensor. The result of doing this to a symmetric tensor is to produce, in the transverse plane, a
two-dimensional matrix with only two independent elements:

hab =
✓

h+ h⇥
h⇥ �h+

◆
. (3)

This is the definition of the wave amplitudes h+ and h⇥ that are illustrated in Figure 1. These
amplitudes are referred to as the coordinates chosen for that plane. If the coordinate unit basis
vectors in this plane are êx and êy, then we can define the basis tensors

e+ = êx ⌦ êx � êy ⌦ êy, (4)
e⇥ = êx ⌦ êy + êy ⌦ êx. (5)

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2009-2
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The variation of the total action S = Sg + Sm with respect to gµν gives the
Einstein equations

Gµν = Rµν −
1

2
gµν R =

8πG

c4
Tµν . (2.8)

The above equations are nonlinear equations with well posed initial value struc-
ture, i.e. they determine future values of gµν from given initial values. Since
µ = 0, · · · 3, ν = 0, · · · 3, Eq. (2.8) contains sixteen differential equations, which
reduce to ten differential equations if the symmetry of the tensors Gµν and Tµν

is used. Finally, because of the Bianchi identity we have G ;ν
µν = 0, thus the ten

differential equations reduce to six.
General relativity is invariant under the group of all possible coordinate trans-

formations
xµ → x′µ(x) , (2.9)

where x′µ is invertible, differentiable and with a differentiable inverse. Under the
above transformation, the metric transforms as

gµν(x) → g′µν(x
′) =

∂xρ

∂x′µ

∂xσ

∂x′ν
gρσ(x) . (2.10)

We assume that there exists a reference frame in which, on a sufficiently large
spacetime region, we can write

gµν = ηµν + hµν , |hµν | # 1 . (2.11)

By choosing this particular reference frame, we break the invariance of general
relativity under coordinate transformations. However, a residual gauge symmetry
remains. Let us consider the following coordinate transformation

xµ → x′µ = xµ + ξµ(x) , |∂µξν | ≤ |hµν | . (2.12)

The metric transforms as

g′µν = ηµν − ∂νξµ − ∂µξν + hµν + O(∂ξ2) , (2.13)

thus, introducing
h′

µν = hµν − ξµ,ν − ξν,µ , (2.14)

we have
g′µν = ηµν + h′

µν , |h′
µν | # 1 . (2.15)

In conclusion, the slowly varying coordinate transformations (2.12) are a sym-
metry of the linearized theory. Under a finite, global (x-independent) Lorentz
transformation

xµ → Λµ
ν xν , Λρµ Λσν ηρσ = ηµν , (2.16)

Gµ⌫ = 8⇡Tµ⌫ Einstein equations
…linearized

GW propagation

GW emission

Binaries are natural emitters
Binary cars?
M ⇠ 103Kg

h ⇠ 10�42

Binary black holes!

v ⇠ 0.1c
r ⇠ 100Mpc
h ⇠ 10�21

M ⇠ 10M� ⇠ 1031Kg

Mass quadrupole strain

mass

distance

velocity
measurement

detector

v ⇠ 1000Km/h
on a 1 km track

r ⇠ � ⇠ REarth

h ⇠ Mv2

r
⇠ �L

L

⇤h̄µ⌫ = 0



GW signals from BH mergers

Inspiral Merger Ringdown

• Frequency gradually 
increases during the 
inspiral 

• Merger of two BHs is 
one of the most 
energetic events in the 
Universe 

• Direct signal from  
highly-dynamic strong-
field gravity 

• BHs have no hair: final 
remnant has to dissipate 
all properties but mass 
and spin (ringdown)

post-Newtonian
numerical relativity BH perturbations

We need templates!



0.00000000000000000000001
No worries we “just” need a precision of



Lasers to detect gravity



LIGO Lousiana LIGO Washington

VIRGO Italy

LIGO and Virgo on Google Maps



It all begun with GW150914

properties of space-time in the strong-field, high-velocity
regime and confirm predictions of general relativity for the
nonlinear dynamics of highly disturbed black holes.

II. OBSERVATION

On September 14, 2015 at 09:50:45 UTC, the LIGO
Hanford, WA, and Livingston, LA, observatories detected

the coincident signal GW150914 shown in Fig. 1. The initial
detection was made by low-latency searches for generic
gravitational-wave transients [41] and was reported within
three minutes of data acquisition [43]. Subsequently,
matched-filter analyses that use relativistic models of com-
pact binary waveforms [44] recovered GW150914 as the
most significant event from each detector for the observa-
tions reported here. Occurring within the 10-ms intersite

FIG. 1. The gravitational-wave event GW150914 observed by the LIGO Hanford (H1, left column panels) and Livingston (L1, right
column panels) detectors. Times are shown relative to September 14, 2015 at 09:50:45 UTC. For visualization, all time series are filtered
with a 35–350 Hz bandpass filter to suppress large fluctuations outside the detectors’ most sensitive frequency band, and band-reject
filters to remove the strong instrumental spectral lines seen in the Fig. 3 spectra. Top row, left: H1 strain. Top row, right: L1 strain.
GW150914 arrived first at L1 and 6.9þ0.5

−0.4 ms later at H1; for a visual comparison, the H1 data are also shown, shifted in time by this
amount and inverted (to account for the detectors’ relative orientations). Second row: Gravitational-wave strain projected onto each
detector in the 35–350 Hz band. Solid lines show a numerical relativity waveform for a system with parameters consistent with those
recovered from GW150914 [37,38] confirmed to 99.9% by an independent calculation based on [15]. Shaded areas show 90% credible
regions for two independent waveform reconstructions. One (dark gray) models the signal using binary black hole template waveforms
[39]. The other (light gray) does not use an astrophysical model, but instead calculates the strain signal as a linear combination of
sine-Gaussian wavelets [40,41]. These reconstructions have a 94% overlap, as shown in [39]. Third row: Residuals after subtracting the
filtered numerical relativity waveform from the filtered detector time series. Bottom row:A time-frequency representation [42] of the
strain data, showing the signal frequency increasing over time.

PRL 116, 061102 (2016) P HY S I CA L R EV I EW LE T T ER S week ending
12 FEBRUARY 2016

061102-2

A numerical 
model…

Data streams with 
minimal filtering

in spectacular 
agreement

f ⇠ t8/3



In the mid-1960s, gamma-ray bursts (GRBs) were discovered
by the Vela satellites, and their cosmic origin was first established
by Klebesadel et al. (1973). GRBs are classified as long or short,
based on their duration and spectral hardness(Dezalay et al. 1992;
Kouveliotou et al. 1993). Uncovering the progenitors of GRBs
has been one of the key challenges in high-energy astrophysics
ever since(Lee & Ramirez-Ruiz 2007). It has long been
suggested that short GRBs might be related to neutron star
mergers (Goodman 1986; Paczynski 1986; Eichler et al. 1989;
Narayan et al. 1992).

In 2005, the field of short gamma-ray burst (sGRB) studies
experienced a breakthrough (for reviews see Nakar 2007; Berger
2014) with the identification of the first host galaxies of sGRBs
and multi-wavelength observation (from X-ray to optical and
radio) of their afterglows (Berger et al. 2005; Fox et al. 2005;
Gehrels et al. 2005; Hjorth et al. 2005b; Villasenor et al. 2005).
These observations provided strong hints that sGRBs might be
associated with mergers of neutron stars with other neutron stars
or with black holes. These hints included: (i) their association with
both elliptical and star-forming galaxies (Barthelmy et al. 2005;
Prochaska et al. 2006; Berger et al. 2007; Ofek et al. 2007; Troja
et al. 2008; D’Avanzo et al. 2009; Fong et al. 2013), due to a very
wide range of delay times, as predicted theoretically(Bagot et al.
1998; Fryer et al. 1999; Belczynski et al. 2002); (ii) a broad
distribution of spatial offsets from host-galaxy centers(Berger
2010; Fong & Berger 2013; Tunnicliffe et al. 2014), which was
predicted to arise from supernova kicks(Narayan et al. 1992;
Bloom et al. 1999); and (iii) the absence of associated
supernovae(Fox et al. 2005; Hjorth et al. 2005c, 2005a;
Soderberg et al. 2006; Kocevski et al. 2010; Berger et al.
2013a). Despite these strong hints, proof that sGRBs were
powered by neutron star mergers remained elusive, and interest
intensified in following up gravitational-wave detections electro-
magnetically(Metzger & Berger 2012; Nissanke et al. 2013).

Evidence of beaming in some sGRBs was initially found by
Soderberg et al. (2006) and Burrows et al. (2006) and confirmed

by subsequent sGRB discoveries (see the compilation and
analysis by Fong et al. 2015 and also Troja et al. 2016). Neutron
star binary mergers are also expected, however, to produce
isotropic electromagnetic signals, which include (i) early optical
and infrared emission, a so-called kilonova/macronova (hereafter
kilonova; Li & Paczyński 1998; Kulkarni 2005; Rosswog 2005;
Metzger et al. 2010; Roberts et al. 2011; Barnes & Kasen 2013;
Kasen et al. 2013; Tanaka & Hotokezaka 2013; Grossman et al.
2014; Barnes et al. 2016; Tanaka 2016; Metzger 2017) due to
radioactive decay of rapid neutron-capture process (r-process)
nuclei(Lattimer & Schramm 1974, 1976) synthesized in
dynamical and accretion-disk-wind ejecta during the merger;
and (ii) delayed radio emission from the interaction of the merger
ejecta with the ambient medium (Nakar & Piran 2011; Piran et al.
2013; Hotokezaka & Piran 2015; Hotokezaka et al. 2016). The
late-time infrared excess associated with GRB 130603B was
interpreted as the signature of r-process nucleosynthesis (Berger
et al. 2013b; Tanvir et al. 2013), and more candidates were
identified later (for a compilation see Jin et al. 2016).
Here, we report on the global effort958 that led to the first joint

detection of gravitational and electromagnetic radiation from a
single source. An ∼ 100 s long gravitational-wave signal
(GW170817) was followed by an sGRB (GRB 170817A) and
an optical transient (SSS17a/AT 2017gfo) found in the host
galaxy NGC 4993. The source was detected across the
electromagnetic spectrum—in the X-ray, ultraviolet, optical,
infrared, and radio bands—over hours, days, and weeks. These
observations support the hypothesis that GW170817 was
produced by the merger of two neutron stars in NGC4993,
followed by an sGRB and a kilonova powered by the radioactive
decay of r-process nuclei synthesized in the ejecta.

Figure 1. Localization of the gravitational-wave, gamma-ray, and optical signals. The left panel shows an orthographic projection of the 90% credible regions from
LIGO (190 deg2; light green), the initial LIGO-Virgo localization (31 deg2; dark green), IPN triangulation from the time delay between Fermi and INTEGRAL (light
blue), and Fermi-GBM (dark blue). The inset shows the location of the apparent host galaxy NGC 4993 in the Swope optical discovery image at 10.9 hr after the
merger (top right) and the DLT40 pre-discovery image from 20.5 days prior to merger (bottom right). The reticle marks the position of the transient in both images.

958 A follow-up program established during initial LIGO-Virgo observations
(Abadie et al. 2012) was greatly expanded in preparation for Advanced LIGO-
Virgo observations. Partners have followed up binary black hole detections,
starting with GW150914 (Abbott et al. 2016a), but have discovered no firm
electromagnetic counterparts to those events.

2

The Astrophysical Journal Letters, 848:L12 (59pp), 2017 October 20 Abbott et al.

• A third GW detector is the only 
reasonable way to do this 

• Time coincidence with gamma 
rays and fast communication 

• Still some 50 galaxies…

The gold rush



2017 Nobel Prize

R. Weiss B. Barish K. Thorne

“for decisive contributions to the LIGO detector 
and the observation of gravitational waves”



Just passing by…

Credits:  
My hometown’s  
newspaper



Can BHs really make it?

aGW = 1.2⇥ 1011
✓

tGW

1.4⇥ 1010yr

◆1/4 ✓ M

M�

◆3/4

cm

Gravitational waves are efficient below 

⇠ 10R� stellar-mass BHs 

Power emitted in gravitational waves:

5.2 The interplay between astrophysics and relativity 91

at the leading, Newtonian order (Peters and Mathews 1963; Peters 1964):

da

dt
= �64

5

G3M3

c5a3
q

(1 + q)2
(1� e2)�7/2

✓
1 +

73

24
e2 +

37

96
e4
◆

, (5.5)

de

dt
= �304

15
e
G3M3

c5a4
q

(1 + q)2
(1� e2)�5/2

✓
1 +

121

304
e2
◆

. (5.6)

For example, from the above equations we have da/de ⇠ (12/19)(a/e) and consequently
a ⇠ e12/19. The eccentricity decreases faster than the separation: deviations from the
circular inspiral become smaller and smaller as the separation decreases. Fig. 5.2 shows the
merger timescale in the GW-driven phase for BH binaries of total mass M = 10M� and
mass ratio q = 0.8 (which is the same value used in Chapter 7). The coupled differential
equations (5.5) and (5.6) are solved numerically from initial values a0 and e0. We plot on a
color-coded scale the time necessary1 to reach a ' 0. Integrations are performed using the
StepperDopr5 routine developed in Press et al. (2002). The merger timescale increases
with the initial separation a0, because a very small amount of energy is emitted when the
BHs are far from each other (P ⇠ a�5, from Eq. 5.3). Highly eccentric binaries will merge
quicker because less angular momentum has to be emitted (see Eq. 3.1) and more radiation
is emitted at periastron because the bodies are closer to each other.

Further PN corrections of these evolutionary equations in the case of elliptic orbits can be
found in Damour et al. (2004), Sperhake et al. (2008a) and references therein. In this work
we use the standard Peters equations (5.5) and (5.6) to select merging binaries because they
give the timescale of the process within the level of accuracy that we require (Sec. 7.1.2).
The BH inspiral described in Chapter 6, is modeled in far more detail using higher-order
corrections for circular orbits.
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Figure 5.2: Merger timescale in the GW-driven inspiral for BH binaries with M = 10M�
and q = 0.8. The color-coded map shows (on a logarithmic scale the time needed (in yrs) for
a BH binary with semi major axis a0 and eccentricity e0 to reach coalescence. Black lines
mark 106, 108, 1010, 1012 and 1014 yrs from bottom to top respectively. The calculation was
performed by numerically integrating Eqs. (5.5) and (5.6).

1We cannot formally reach the final separation a = 0, because the system becomes stiff: in practice we
follow the solutions down to fiducial separations 10�8

a0, which are well outside the range of separations
where Eqs. (5.5) and (5.6) are valid.

GW-driven inspiral timescale 

Peters and Mathews 1963 
Peters 1964

Relativity alone cannot explain the LIGO events!  
We need some astrophysics!



Have we been together for so long?

Yes! I’ve known you 
since you were a star

Don’t you remember?   
We just met in cluster



Bayes: the man
P (✓|d,�) = P (d|✓) p(✓|�)R

P (d|✓) p(✓|�)

�

✓
Parameters: describe single events.  
Masses, spins, redshifts, eccentricity, etc 
Enter the likelihood

Hyperparameters: describe the population 
Common envelope efficiency, cluster hardening, SN kicks, etc 
Enter the prior

Hierarchical framework: 

P (✓|d) = P (d|✓) p(✓)R
P (d|✓) p(✓)

Odds ratio

O12 =
P (✓|d,�1) p(�1)

P (✓|d,�2) p(�2)
P (�|✓, d) = P (✓|d,�)p(�)R

. . .



Do it for real: ingredients
A population synthesis code

Latin hypercubes

3

II. STATISTICAL FRAMEWORK

In this Section we describe a statistical framework for
choosing points in hyper-parameter space at which to
generate simulated astrophysical populations (Sec. II A),
defining a data-driven basis for the distributions of pop-
ulation parameters (Sec. II B), and training an interpo-
lation scheme to emulate these parameter distributions
(Sec. II C). Our framework closely follows the steps out-
lined for cosmological matter power spectrum studies in
Refs. [42, 43].

A. Simulation design

We need a careful strategy for determining the loca-
tions in hyper-parameter space at which to perform the
simulations that will eventually be used to train our
emulator. While the temptation is to choose an N -
dimensional grid-design, this turns out to be highly sub-
optimal. The hyper-parameter space dictating stellar-
mass binary evolution is O(10) dimensions, and grid-
based designs quickly explode in the number of required
simulations. For example, if we choose a simple grid
with 3 nodes along each dimension, then in 2-dimensions
this is a reasonable choice, requiring 9 simulations in
total. However, expanding this to 10 dimensions re-
quires 310 ⇠ 6 ⇥ 104 simulations, which is a computa-
tionally prohibitive step for current population-synthesis
codes. The entire purpose of constructing an emulator
is to avoid the need for high numbers of costly simula-
tion runs. Furthermore, grid-based designs are poor at
covering low-dimensional projections of the full hyper-
parameter space. If the distribution of BH masses and
spins is dominated by only three hyper-parameters (say
progenitor metallicity, natal kicks, and common-envelope
e�ciency) out of the full 10 dimensional space, then our
above-mentioned grid-based design only assigns 33 = 27
unique simulated combinations of these important hyper-
parameters out of the total ⇠ 6 ⇥ 104 simulations. The
opposite case is a purely random design, which however
su↵ers from large regions of sparsely populated hyper-
parameter space because random sampling maintains no
record of where previous points have been placed.

One thus needs a simulation design that gives
good coverage over all lower-dimensional projections of
the hyper-parameter space, while simultaneously being
sparse enough in the full space to make the program of
simulations computationally tractable. A popular solu-
tion is given by stratified sampling. If M points are to
be drawn, the hyper-parameter volume is first divided
into M equally-probable sub-strata, within which ran-
dom sampling for each point is employed. Specifically,
we use space-filling Latin hypercube designs [47], where
each sample is the only one permitted to occupy the axis-
aligned hyperplane containing it. One must define how
many samples are to be drawn at the outset of sampling,
and the sampler keeps a record of the position of each
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FIG. 2. Example of {x, y, z} hyper-parameter locations as-
signed on an evenly-spaced grid (green triangles), randomly
(orange squares), and with Latin hypercube sampling (blue
circles), for M = 8 training coordinates. A projection of these
coordinates into the {x, y} plane is shown on the right.

past draw. A variant on this technique for integers in
the range [0, 9] produces the popular puzzle Sudoku.

We use the pyDOE [48] python module for all simulation
designs in this paper. Various sampling options are avail-
able, but we choose to maximize the minimum separa-
tion between points in hyper-parameter space, while also
centering them within the sampling intervals. We com-
pute all simulation coordinates on the unit hypercube,
then transform them to the physical hyper-parameter
ranges of interest. Figure 2 shows a comparison of how
M = 8 training coordinates would be assigned in hyper-
parameter space according to di↵erent simulation design
schemes.

B. Data compression

Running population synthesis simulations will provide
a catalog of systems, each one with associated measured
parameters. In the case of compact binaries, these pa-
rameters include component masses, spins, luminosity
distance, perhaps eccentricity, etc. A natural way to
summarize all this information is to produce histograms
of the properties over the entire population; an inter-
polant could then be used to learn how the input sim-
ulation hyper-parameters a↵ect the height of each his-
togram bin. Although there is nothing formally wrong
with this strategy, it misses the opportunity to generate
a data-driven basis on which to summarize the param-
eter distributions, rather than use naive binning. If we
simply binned then we would need as many interpolants
as bins, which might cause an unnecessary explosion of
the computational cost. But if our training distributions
lack pathological features, we can form a set of basis dis-
tributions that are smaller in number.

To generate a data-driven basis for the simulated dis-
tributions of a binary property, we form a data matrix D
of shape Nbins ⇥ Nsims. Each column in this matrix cor-
responds to a single simulation, and contains the normal-
ized bin heights in the histogram for the parameter (flat-

2. 
1.

Design a training bank. Space filling algorithms

3. Some form of data compression
Principal component analysis
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other bodies [26]. There is thus much poorly known stel-
lar astrophysics that catalogs of GW detections can be
mined for.

Several techniques have been developed to perform
GW population inference, ranging from phenomenolog-
ical parametrized modeling to discrete model selection,
with mixture modeling as a blending of the former two.
In phenomenological models, the distribution of com-
ponent masses, spins, and redshifts are reconstructed
through relatively simple parametrizations (e.g. [27–33]).
Any inference with these models will only be a broad
sketch of the complicated process of compact binary for-
mation. Detailed stellar population modeling allows bi-
nary stars to be tracked from known astrophysical as-
sumptions all the way through to compact binary forma-
tion (or not, depending on conditions). But these are
computationally expensive (making real-time simulation
runs during Bayesian analysis unfeasible), and are typi-
cally performed in small batches for comparisons to ob-
servations. This approach has been very successful, show-
ing e.g. that GW150914’s stellar progenitor had a metal-
licity of ⇠ 5% Z� [34–36]. More systematic approaches
have also been taken, where Bayesian model selection is
performed on grids of discrete population synthesis sim-
ulations, or where simulations are mixed together with
weightings inferred from the data [29, 37–40]. Finally,
non-parametric methods have been developed to allow re-
covery of binary parameter distributions that is more ag-
nostic than the parametrized-model approach [41]. These
methods recover the bin heights of parameter distribution
histograms, typically with Gaussian Process (GP) priors
linking the bins to enforce smoothness.

In this paper we present a qualitatively new approach
that fuses non-parametric modeling with population-
synthesis simulations. In brief, we model histograms of
GW parameter distributions with bin heights constrained
by informative parametrized-priors built out of popula-
tion synthesis simulations. This allows us to fully exploit
catalogs of GW detections to directly infer the proper-
ties of progenitors and the evolutionary path undertaken.
Our methods give predictions of rates and parameter
distributions of compact-binary systems by interpolat-
ing between a set of population-synthesis simulations in-
formed by the data. Crucially, the framework developed
here remains agnostic of the specific population synthesis
code to used.

We follow a multi-stage process (illustrated in Fig. 1),
beginning with a design for the program of simulations
across hyper-parameter space, compressing distributions
of binary parameters to distill the most important fea-
tures, and training a GP model to interpolate between
the simulation hyper-parameter coordinates. These mod-
els are then fed to a hierarchical Bayesian pipeline to re-
cover the joint posterior probability distribution of pop-
ulation hyper-parameters, while incorporating measure-
ment uncertainties in each binary’s parameters. GP emu-
lation of computationally-expensive simulations has been
used in cosmological matter power spectrum analysis
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FIG. 1. A schematic representation of interpolating over pa-
rameter distributions( ✓, e.g. masses, spins, redshift) as a
function of population hyper-parameters (�, e.g. progeni-
tor metallicity, common-envelope hardening e�ciency, natal
kicks, etc.). We carry out a restricted number of population
synthesis simulations with di↵erent hyper-parameters, where
each simulation produces compact binaries distributed over
parameter space. These parameter distributions form the
training data for our interpolant model. For each bin, pixel,
or feature in the parameter distribution, we train a GP inter-
polant over the hyper-parameter space, allowing us to predict
the distribution at any other hyper-parameter coordinate.

[42, 43], pulsar-timing array GW constraints on super-
massive binary BH dynamical environments [44, 45], and
has been suggested in principle for stellar-mass binary
BH population inference [46]. Here we fully develop this
emulation approach, embedding it in a complete end-to-
end statistical framework, starting from the simulation
program design and following through to GW catalog
analysis.

This paper is laid out as follows. In Sec. II we de-
scribe how to choose locations in the hyper-parameter
space where we should perform simulations, how to com-
press distributions of simulated binary parameters, and
how we interpolate over these compressed distributions
using GPs. We introduce our inference tools in Sec. III,
including Bayesian GW parameter estimation, a scheme
to convolve the intrinsic simulated binary distributions
with detector selection e↵ects, and a pipeline to perform
hierarchical Bayesian inference on catalogs of GW detec-
tions. We show our results in Sec. IV, where our entire
framework is tested on three case studies that succes-
sively increase in complexity and astrophysical realism.
These include (i) a toy analytic model, (ii) an example
with publicly-available population synthesis simulations,
and (iii) finally an example with our custom program of
simulations. We provide our conclusions and a discussion
of future prospects in Sec. V.
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FIG. 6. Testing the accuracy of our GP emulator for the model of Eq. (33). In the left panel we create training data on an
evenly-spaced 8⇥8 grid in log10 �1,2 space (red points). We achieve a data compression factor of ⇠ 500, then train a GP in each
of the reduced basis features. The GP prediction is compared to the analytic result across �1,2 space by taking the GP-mean
(o↵set by 1 �), rotating back to the full z1,2 basis, then finding the maximum di↵erence from the analytic value in any z1,2 bin.
Low accuracy locations are used to inform the positions at which new simulations are performed. These additional points are
shown in the right panel as empty circles, where we see that their addition improves accuracy across the entire hyper-parameter
space.

FIG. 7. Comparison of posterior recoveries of population
hyper-parameters from a catalog of 100 sources with spin-
alignment distribution given by Eq. (33) [82]. The true hyper-
parameter coordinate, {�1 = 0.45,�2 = 0.45} is indicated via
intersecting white dashed lines.

will always be positive. We can now predict the distri-
bution values in compressed parameter space, and rotate
this back into the full parameter space to construct the
final predictions.

Figure 6 shows validation studies for di↵erent num-
bers of initial training data. For an evenly-spaced grid of
8 ⇥ 8 = 64 training datasets in hyper-parameter space,
we achieve an accuracy of better than ⇠ 50% across the
majority of the space. The worst performance occurs in
parts of hyper-parameter space that are voids of simula-
tions. We find the 36 worst accuracy locations, and add
these as additional simulations to improve accuracy to
better than 10%. Similar accuracy is given by an Latin-
hypercube design of 100 training datasets.

We now test our framework on a simulated popula-
tion, consisting of 100 sources drawn from p(z1, z2) with
� = {�1 = 0.45, �2 = 0.45}. A comparison of the joint
posterior probability distribution of {�1, �2} as recovered
by the analytic model [Eq. (33)] and the GP framework
is shown in Fig. 7. The GP framework is trained on 100
simulations from a Latin-hypercube design; we use this
design because it is our standard approach for e�ciently
sampling the high-dimensional hyper-parameter space of
binary stellar evolution, and it gives similar emulation ac-
curacy to the adaptive design in the right panel of Fig. 6.
In this analysis, we have propagated all uncertainties
from the GP prediction and the hyper-parameters of the
trained GP covariance function into the final model. The
agreement is excellent, with the true hyper-parameter co-
ordinate lying well within the 68% credible region of both
techniques. We have not incorporated the e↵ect of indi-
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precession. We presented an innovative analysis which leverages multi-timescale methods to efficiently
average the dynamics on both the orbital and precessional timescale (Kesden+, 2015; Gerosa+, 2015b).
Our new analytic solutions improve our understanding of spin precession in much the same way that the
conical sections for Keplerian orbits provide additional insights beyond Newton’s 1/r

2 law. They provide a
deeper understanding of binary BH spin precession, just like the orbits of Kepler are more illuminating
than a brute force integration of Newton’s inverse-square law.

This breakthrough led to an explosion of new predictions: we uncovered morphological transitions
(Gerosa+, 2015b), discontinuous limits (Gerosa+, 2017), extreme nutations (Gerosa+, 2019a), new
resonant phenomena (Zhao+, 2017), and precessional instabilities (Gerosa+, 2015a). Our multi-timescale
analysis of spin precession has been used to construct closed-form, frequency-domain gravitational
waveforms for GW detection and parameter estimation which are now part of the standard LIGO/Virgo
codes (Chatziioannou+, 2017a,b; Khan+, 2018). At its heart, our analysis consists of a new, efficient, PN
framework to evolve spinning BH binaries on quasi-circular orbits. It provides an enormous computational
speed-up: we can now calculate inspirals from arbitrarily large separations capturing infinitely many
precession cycles. This is the tool one needs to bridge the gap between astrophysical binary BH
formation and the GWs emitted at frequencies detectable by LIGO/Virgo. Our findings are implemented
in the public code PRECESSION (Gerosa and Kesden, 2016).

Very little work has been carried out on properly merging population synthesis simulations and PN
evolutions. This line of research has been pioneered by the PI (Gerosa+, 2013), which was involved in
the majority of the contributions on this topic (Gerosa+ 2013, 2015c, 2018, 2019b; Wysocki+ 2018a; the
study by Rodriguez+ 2016b is a notable exception which, however, also relies my code). Gerosa+ (2018)
presented the most mature study to date in this direction: we post-processed outputs from the StarTrack
population-synthesis code (Belczynski+, 2016b) to forecasts future LIGO constraints on the physics of
supernova kicks and tidal interactions. Much work remains to be done. In particular, spins must be
estimated consistently within population synthesis codes (and not in post-processing) and eccentricity
needs to be included in the PN evolutions.

Background: hierarchical model selection

Reconstructing the astrophysics of compact binary coalescences from GW data is a two-step process.
The parameters of each individual event are first extracted from the interferometric data. Events in
the catalog are then combined to reconstruct the features of the population in its entirety. Bayesian
statistics is arguably the most natural approach in such a hierarchical scenario. Inference can be naturally
propagated through multiple layers using posteriors from each layer as priors for the next one.

Bayesian parameter estimation pipelines are routinely run to characterize the parameters ✓ of each
confirmed event (Abbott+, 2016c, 2018a). These includes the observables highlighted above (masses,
spins, redshift, eccentricity) but also other extrinsic quantities like the source location in the sky, the
binary inclination etc. Priors ⇡(✓) needs to be imposed on all these quantities, reflecting our best beliefs
(for instances, all masses have to be positive, etc). Results of such analyses are provided under the form
of a detection catalog, containing posterior distributions pi(✓|d) for each of the detected event (Abbott+,
2016c, 2018a). Inference can propagated to the population layer by analyzing these samples in light of a
specific astrophysical population model, which will depend on some other parameters �. Bayes’ converts
priors ⇡(�) into posteriors p(�|d), conveying how our knowledge on the population parameters � has
been updated by the data d.

Let us assume that an astrophysical model defined by � predicts a total number of events N(�)
distributed accordingly to ppop(✓|�). Detector’s selection effect are encoded in a function pdet(✓), setting
the probability of observing an event with parameters ✓ with the current detectors. The posterior
distribution on the population parameters reads (Loredo, 2004; Taylor and Gerosa, 2018; Mandel+, 2019;
Thrane and Talbot, 2019)

p(�, N |d) / ⇡(�)N(�)Nobs exp


�N(�)

Z
d✓ pdet(✓)ppop(✓|�)

�NobsY

i=1

Z
d✓ pi(✓|d)

ppop(✓|�)

⇡(✓)
, (1)

where Nobs is the number of entries in the catalog. This equation contains the essence of all GW
population studies. The first integral filters the intrisic population ppop(✓|�) according to the detector’s
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selection effects pdet(✓). The second integral inside the product sign reweighs the observed posterior
pi(✓|⇡) from the default prior ⇡(✓) to the population under scrutiny ppop(✓|�). One could marginalize over
N assuming ⇡(N) / 1/N (Fishbach+, 2018) and obtain the familiar expression

p(�|d) / ⇡(�)
NobsY

i=1

R
d✓ ppop(✓|�)pi(✓|d)/⇡(✓)R

d✓ ppop(✓|�)pdet(✓)
. (2)

This hierarchical formalism naturally allows the analysis of multiple events in light of astrophysical
predictions ppop(✓|�) and N(�).

State of the art: selection effects

Accurate estimates of detector’s selection effects pdet(✓) are vital to recover unbiased population
parameters. State-of-the-art analyses involve large injections campaigns to evaluate the recovery power
of search pipelines (Abbott+, 2016a, 2018b). Although very accurate, these approaches are not suitable
for population studies because a different, computationally expensive, set of injections would be required
at each likelihood evaluation. A simple and widely used approximation for pdet(✓) can be obtained
semi-analytically by approximating the response of the network via a threshold in the signal-to-noise ratio
(Finn and Chernoff, 1993; Finn, 1996; O’Shaughnessy+, 2010; Dominik+, 2015; Chen+, 2017; Taylor and
Gerosa, 2018). This simple approach has been proven to be remarkably successful when compared
to injections campaigns (Abbott+, 2016a, 2018b). Recently, a hybrid approach has been proposed
where injection-calibrated estimates of pdet(✓) are interpolated for different populations (Wysocki and
O’Shaughnessy, 2018). This procedure is promising and will be explored during the course of GWmining.

State of the art: parametrized models

Current, state-of-the-art population inference studies relies on some form of analytic parametrization
(Fishbach+, 2017, 2018; Farr+, 2017, 2018; Fishbach and Holz, 2017, 2019; Talbot and Thrane, 2017,
2018; Vitale and Farr, 2018; Abbott+, 2018b; Bai+, 2018; Wysocki+, 2018b; Roulet and Zaldarriaga,
2019). The population ppop(✓|�) takes some simple functional form with a few free parameters which are
estimated from the data. The most mature study in this direction was presented by Abbott+ (2018b),
which analyzed 10 binary BHs from O1 and O2 in light of a variety of analytical population models. For
instance, one of their models assumed the that the distribution of primary BHs in binaries follows a
power law ppop(m1) / m

↵
1 , secondaries are paired according to ppop(m2|m1) / m

�
2 , and possible cutoffs

are present: mmin m2 m1 mmax. They then use a hierarchical Bayesian analysis to reconstruct
posteriors of � = {↵, �, mmin, mmax}. Similar assumptions were made on spins and redshift distributions.

Generic parameterizations are certainly appealing for they simplicity, but one has to realize that these
choices are not agnostic. On the contrary, they are deeply inspired by some astrophysical features and
carefully designed to put those features to the test. For instance, it is well known that the mass spectrum
of massive stars follow a power law (Kroupa, 2002). It might be natural to assume that the same holds for
BHs, perhaps with different spectral indexes ↵ and �. Similarly, imposing cutoffs mmin and mmax at lower
(Farr+, 2011) and high masses (Woosley, 2017) reflects our astrophysical understanding of how NSs and
BHs form following core collapse. If the true BH mass spectrum that the Universe departs significantly
from a power law, a parametrized analysis would still return best-fit values for ↵ and �, although with
larger uncertainties. This issue is alleviated by attempting several analyses with different functional forms,
trying to find those that best match the data (cf. e.g. Abbott+ 2018b).

In this parametric approach, data analysts’ choose the functional form of ppop and decide which
astrophysical features are worth testing. The interpretation of the results, however, might remain
somewhat obscure: measuring values of ↵ and � does not specify which astrophysical processes can
explain them. While population-synthesis developers strive to capture as many astrophysical details as
possible in their codes, the full power of their predictions is ofter watered down and hammered into
simple functions. Solving this issue is a key objective of GWmining.

Simple attempt of comparing data and simulations include (i) the computation of odds ratio and (ii)
mixture models. First, one can carry out two simulations and compare their odds ratio by comparing
Bayesian evidences. This approach is deeply unsatisfactory, because it does not provide a posterior
distribution of the population parameters, and only returns which of the two sets of assumptions best
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FIG. 9. Intrinsic distribution of BH binary chirp masses for progenitor metallicity values corresponding the simulations by [25]
(colored lines) and the 68% and 90% upper limits from an analysis of the current GW catalog (black dashed lines). The chirp
masses of the GW events in the catalog are shown with vertical blue bands.

important stellar (hyper-)parameters that can po-
tentially be measured with GW data. Here we vary
↵ce in [0.001, 10.0].

We use {Z, �k, ↵ce} as hyper-parameters, thus implic-
itly assuming that all stars in the same simulated uni-
verse share common values of those quantities. While
this might be a good working assumption for, e.g., ↵ce, it
is surely not true for other parameters like the metallicity.
That said, our methods can be straightforwardly gener-
alized to a distribution of metallicities with parameters
that can be treated as hyper-parameters in our inference
instead of Z itself (much like �k, which is a parameter
in the Maxwellian kick distribution, not the kick velocity
itself).

We perform 125 BSE simulations distributing log10 Z,
�k, and log10 ↵ce on a Latin hyper-cube as described in
Sec. II A and drawing N = 107 ZAMS binaries at each
point in hyper-parameter space. Each of these 125 ⇥ N
simulated stars is filtered according to two criteria: (i)
a BH binary is formed, and (ii) it merges before z =
0. Binaries passing these cuts are assigned an Advanced
LIGO detection probability, pdet (c.f. Sec. III B).

Each BSE simulation returns a population of BH bina-
ries characterized by their masses and merger redshifts,
which we use as measured event parameters in our statis-
tical inference. Examples of the intrinsic {M, z} distri-

FIG. 10. An example of two BSE training simulations, show-
ing the intrinsic {M, z} distribution of merging BH binaries.
Contours enclose 68% and 90% of simulated binaries, where
the blue solid lines are for a very low metallicity progenitor
scenario, while the orange dashed lines are for a simulation
close to solar metallicity.

bution for two of these simulations are shown in Fig. 10,
where low Z values ensure stars are able to form mas-
sive BHs. The relative merger rate (i.e. the fraction of
ZAMS stars that form merging BH binaries) is shown

Interpolating predictions by Stevenson+2017 along metallicity  
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FIG. 8. Posterior probability distribution of progenitor metal-
licity Z, as inferred by an analysis of the current BH catalog
in Table I using a model for the chirp mass distribution that
is conditioned on simulations from [25]. Dashed vertical lines
marks the 68% and 90% confidence intervals.

was trained (including some sharp features), namely that
the distribution of chirp masses shifts to smaller values
as the progenitor metallicity is increased. Physically, this
is because stellar winds are weaker in stars with lower
metallicity, that thus tend to form heavier BHs like the
ones detected by Advanced LIGO [25, 34–36]. The events
of the current binary BH catalog are shown as vertical
bands corresponding to the 90% credible region of chirp
mass.

C. BSE Population Synthesis

To further showcase the e↵ectiveness of our statistical
framework, we now consider a more elaborate set of input
data. We perform a dedicated program of population-
synthesis simulations to predict properties of BH binaries
from isolated binary stars.

We use a modified version of the public population syn-
thesis code BSE [18, 90]. The modifications implemented
here are the same described in Refs. [36, 91]: wind mass
loss prescriptions according to Ref. [92] and core-collapse
remnant mass relationship following Ref. [20]. These
minimal updates are necessary to generate any BHs of
masses & 10M� like the ones that are now detected,
and thus to attempt a comparison with the Advanced-
LIGO–Advanced-Virgo data. We stress, however, that
this study is not meant to rival with the full complex-
ity of state-of-the-art binary evolution codes, but rather
highlight the potential of our inference pipeline.
BSE requires us to specify distributions of binary stars

on their zero-age main sequence (ZAMS), and a variety
of flags encoding assumptions of the underlying stellar
physics. We distribute primary masses m1 from an ini-
tial mass function p(m1) / m�2.3

1 in [5, 100]M�; mass
ratios q = m2/m1 uniformly in [0, 1]; initial separations

R uniformly in log10 in [10, 105]R�; eccentricities e from
a thermal distribution p(e) / e; and redshifts z uniformly
in comoving volume using the Plank cosmology [93] (c.f.
Ref. [29] for similar choices).

The evolutionary flags are the quantities that should be
treated as hyper-parameters, and that could potentially
be constrained with current and future catalogs of GW
events. For simplicity, we present results considering a
3-dimensional hyper-parameter space, but our method is
fully generalizable and scalable to higher dimensions. We
fix all flags to their default value in BSE, except for the
following three:

1. Metallicity of the ZAMS star: Z. As already
highlighted above, the progenitor metallicity has a
large impact on the properties of the resulting BHs.
Metallicity strongly a↵ects massive star winds and
thus the mass that remains available to form the
final compact object [22, 24, 92, 94–97]. Here we
consider a metallicity range 0.0001  Z  0.03
where Z� = 0.02 [18].

2. Kicks imparted to BHs at formation: �k. As
stars collapse (perhaps exploding into supernovae),
asymmetries in the emitted material and neutri-
nos may impart a recoil to the newly formed com-
pact object (e.g. Ref. [98]). Observations of galactic
pulsar proper motions suggest that NS recoils are
well modeled by a single Maxwellian distribution
with 1D root-mean-square �k ⇠ 265 km/s [99, 100].
Whether BHs receive any kick at formation is still
a matter of debate. On the one hand, X-ray binary
measurements hint at large kick velocities [101] (c.f.
also Ref. [102] for a GW constraint). Conversely,
theoretical arguments and simulations suggest that
kicks for BHs might be suppressed because of ma-
terial falling back after the explosion [98, 103, 104].
This is a clear case where a method like ours, al-
lowing for a direct estimate of �k, might show its
potential. We consider BH recoils in the range
0 km/s  �k  265 km/s independently of BH mass
or other parameters (see Ref. [40] for a discussion
of this point).

3. E�ciency of the common envelope: ↵ce. After the
first star collapses, the binary system consists of a
BH and an extended star. As this second star ex-
pands into a supergiant, it may overflow its Roche
Lobe and undergo unstable mass transfer to the
BH [105–108]. The envelope of the giant engulfs
the companion BH. In this process, known as the
common-envelope stage, a fraction ↵ce of the bi-
nary’s orbital energy is transferred to the enve-
lope, thus hardening the binary. In the standard
evolutionary channel considered here, common en-
velope evolution is the key stage to produce BHs
able to merge within a Hubble time. The details
of the common envelope phase are still very uncer-
tain [109–112], and are arguably one of the most
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FIG. 12. Corner plot showing 1D-marginalized posterior dis-
tributions of binary BH population hyper-parameters along
the diagonal, and pairwise 2D-marginalized posterior distri-
butions in the lower axes (lines denote 90% credible regions).
The true hyper-parameters are indicated with red lines. The
data were 100 binary BHs from a population simulated with
BSE that was held out of our GP emulator training. Results
are for a distribution-only likelihood [orange dashed, Eq. (30)],
and a re-scaled Poisson-rate likelihood [blue solid, Eq. (29)].

V. CONCLUSIONS

We have developed a new hierarchical Bayesian frame-
work that is capable of recovering posterior probabil-
ity distributions of compact-binary population hyper-
parameters. These hyper-parameters encode details of
stellar evolution, progenitor conditions, and the evolu-
tionary paths taken to form systems that are detected by
ground-based GW instruments such as Advanced LIGO
and Advancdd Virgo.

Our methods fuse non-parametric (i.e. agnostic) mod-
eling of GW parameter distributions with population
synthesis simulations. Given a collection of population
synthesis simulations of potential GW events, we first
formed smoothed histograms of the binary parameters,
stacked the vectors of histogram bin heights, then per-
formed PCA to compress the bins into “features”. This
allowed significant dimensionality reduction while pre-
serving the original distributions to high fidelity. We
then trained GPs to interpolate the weights of these fea-
tures across hyper-parameter space, so that we could em-
ulate parameter distributions at any choice of population
hyper-parameters between the simulated values. Using a
GP allowed uncertainties in the interpolation training to

FIG. 13. Marginalized binary BH population distributions
of rest-frame chirp mass and redshift for the maximum a-
posteriori hyper-parameters from an analysis of the current
Advanced-LIGO–Advanced-Virgo catalog. These are the in-
trinsic merger distributions, rather than convolved with de-
tector selection e↵ects. The blue vertical lines indicate the
parameters of cataloged events.

be propagated through to subsequent statistical analyses.
Other interpolant choices are possible; in future work we
will explore the ability for a deep neural network to learn
compact-binary distributions, and for such a network to
be embedded in a population inference pipeline.

Having constructed a model for GW parameter distri-
butions, we incorporated it into a hierarchical inference
pipeline that used information from the distribution and
rate of binary BH mergers in parameter space to dis-
criminate compact-binary progenitor and evolutionary
scenarios. We tested our pipeline on three case studies
that successively increased in complexity and astrophys-
ical realism. These ranged from a toy analytic model
of binary component spin alignments, to publicly avail-
able population simulations, and finally to our own cus-
tom population synthesis simulations using a modified
version of the publicly-available BSE code. In our final

• 125 sims: custom-made BSE 
pop-synth runs for training  

• 2 parameters: chirp mass and 
redshift 

• 3 hyperparameters: metallicity, 
common envelope, SN kicks

Hurley, Tout, Pols 2002. Lamberts+ 2016

Taylor, DG 2018

with rates 
marginalized over N

Pipeline prototyped on 
BlueBEAR and Athena. 
Stay tuned! Mould, DG+, in prep

Wong, DG+, in prep
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space, see below), a single hidden layer with 32 neurons,
and a final outer layer which classifies the source as either
“detectable” or “not detectable”. The hidden (outer) layer
makes use of a hyperbolic tangent (sigmoid) activation
function. Inputs are preprocessed with an affine transfor-
mation and rescaled within [�1, 1] in each dimension. Neu-
ron weights are initialized using the Glorot algorithm [22].
Optimization is performed using the Adam optimizer [23]
with an initial learning rate of 10�2 and the binary-cross
entropy loss function [12]. The network is exposed to the
training data in batches of size 32 for up to 150 epochs.
After 10 training epochs, the learning rate is decreased
exponentially. In general, neural-network performances
increase with the size of the training sample, but so does
the computational cost of the training. Results presented
in this paper are based on neural networks that have
been trained and tested on two independent samples of
N = 107 sources each. We systematically explored a wide
variety of architectures and the setup we just described
has been found to maximize the validation accuracy at
a reasonable computational cost. Training each of the
neural networks presented in this paper took ⇠ 30 hours
on a single off-the-shelf CPU.

We present results obtained with three classifiers. In all
cases, training and validation sets are generated distribut-
ing detector-frame total masses Mz = M(1+z) uniformly
in [2M�, 1000M�], mass ratios q uniformly in [0.1, 1],
redshifts uniformly in [10�4, 4], and assuming isotropic
orientations ◆, sky locations ↵, �, and polarization angles
 . The largest value of z has been chosen to marginally
exceed the horizon redshift of all the sources in the sam-
ple. We stress that this distribution does not need to
represent a plausible astrophysical scenario but only allow
for accurate training. Once trained, the network can then
be evaluated on the chosen population

To compare our findings against analytic estimates
of pdet, we first develop a simpler network assuming
non-spinning sources (�1 = �2 = 0), considering only
the dominant (`, |m|) = (2, 2) mode, and using the
single-detector condition ⇢S > 8. Stepping up in com-
plexity, we then include higher order modes (`, |m|) =
(2, 2), (2, 1), (3, 3), (3, 2), (4, 4) and precessing sources with
spins distributed uniformly in magnitudes in [0, 1] and
isotropically in directions. In this case, we train networks
using both conditions ⇢S > 8 and ⇢N > 12.

SNRs are computed with PyCBC [24] assuming
the IMRPhenomXPHM [25] waveform model and the
Planck 15 cosmology [26]. We consider a three-detector
network made of LIGO Hanford, LIGO Livingston, and
Virgo at their nominal design sensitivity [27]. When re-
ferring to single-detector SNRs ⇢S , we assume a single
LIGO instrument. Other neural networks trained using
sensitivity curves of LIGO/Virgo during their observing
runs O1, O2, O3, and O4 are provided at Ref. [28].

Figure 2 shows the evolution of the neural-network
accuracies as a function of the training epoch. In this
context, accuracy is simply defined as the fraction of the
inputs which are correctly identified as either “detectable”
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FIG. 2. Neural-network performances during the training
process. Solid (dashed) lines indicate the accuracy evaluated
over the validation (training) dataset. Colors indicate three
different neural networks trained considering: non-spinning
binaries, dominant emission mode, and single detector (blue);
precessing binaries, higher-order modes, and single detector
(orange); precessing binaries, higher-order modes, and three
detectors (green).

or “not detectable”. Among all iterations, we select the
ones that maximize the validation accuracy. The final
values of accuracies and losses are reported in Table I.

As expected, the network trained on non-spinning
sources behaves better because it has to interpolate across
a smaller 7-dimensional parameter space. When consider-
ing the full 13-dimensional parameter space of precessing
binaries, we find that the condition ⇢N > 12 (⇢S > 8)
is easier (harder) to classify. This is because the beam
pattern of a combination of instruments is smoother com-
pared to that of a single interferometer [29]. Although
more instruments contribute to the SNR, it is worth
noting that ⇢N > 12 is a potentially stricter criterion
than ⇢S > 8 with the expected distribution scaling as
⇢�4 [17, 29]. All three neural networks show very similar
performances on validation and training sets, indicating
that we are not overfitting the data.

We stress that the loss and accuracy values depend on
the population one is trying to predict. The distributions
used in the training/testing process were deliberately
chosen to be “challenging” to classify: we overpopulate
regions of the parameter space at high SNR (low z and
high M) to encourage the network to better learn the
various correlations between the input parameters for loud

Unbiassed inference requires 
accurate modelling of selection 
effects

Very first AI model 
was developed on 
BlueBEAR!
Goes beyond common 
single-detector approximation 
and fully consider the network 
response

DG+ 2020

DG+ 2020
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FIG. 4. Deviation between the numerical and semi-analytical
estimates of pdet as a function of redshifted mass Mz and mass
ratio q. This figure is produced using the validation sample of
our model trained on precessing systems, higher harmonics,
and the full LIGO/Virgo network. For large values of Mz and
low values of q, we predict a systematically larger value of pdet

compared to the semi-analytic estimate.

the same distribution used in the training and valida-
tion process, but considering precessing sources, addi-
tional harmonics beyond the dominant emission mode,
and the three-detector LIGO/Virgo network. Although
the vast majority of the sources are correctly identified
(�pdet ' 0), the shoulder extending towards positive val-
ues of �pdet indicates that the analytical single-detector
approximation tends to, on average, underestimates the
LIGO/Virgo response (see also Refs. [20, 30, 31] for GW
selection biases in spinning BH binaries). As shown in
Fig. 4, the “culprits” of these deviations are binaries with
large redshifted mass Mz and small mass ratio q. This is
the region of the parameter space where GW harmonics
beyond the dominant (`, |m|) = (2, 2) mode provide a
significant contribution to the SNR.

Finally, we estimate the performance of our tool on two
plausible astrophysical distributions which are different
from those used in the training process. Our populations
closely mimic those used in Refs. [1, 2] to estimate merger
rates using full software injections. In the first scenario
(“powerlaw”), we distribute m1 according to p(m1) /
m�2.3

1 in [5M�, 100M�] and m2 uniformly in [5M�, m1].
For the second population (“log-uniform”), we assume that
m1 and m2 are distributed uniformly in log: p(m1, m2) /
1/m1m2 with m2  m1. In both cases, we distribute spins
uniformly in magnitudes [0, 1] and isotropic in directions,
and redshifts uniformly in comoving volume and source-
frame time, i.e. p(z) / (dVc/dz)/(1+z), in [10�4, 4]. The
extrinsic angles � are isotropically distributed.

Accuracies on these two populations are reported in Ta-
ble I. Our neural network can correctly classify more than

99% of the sources. If one considers only the subsample
of sources with z < 1, the accuracy drops by ⇠ 1% (⇠ 3%)
for the “powerlaw” (“log-uniform”) case. This is because
such a cut has the effect of preferentially selecting sources
with ⇢ ⇠ ⇢thr which are harder to classify. The green and
red histograms in Fig. 3 show the corresponding values
of �pdet. The region with �pdet > 0 (to the right of the
dashed line in Fig.3) is more populated and corresponds
to cases where our neural networks predicts a larger detec-
tion probability compared to the analytic estimate. Our
results suggest that neglecting spins, higher-order modes,
and considering a single detector (like is done in current
population studies) has the net effect of underestimating
the effective spacetime volume V T , which in turn results
in an overestimate of the astrophysical merger rate.

V. CONCLUSIONS

We presented a new machine-learning approach to esti-
mate selection biases in GW detectors. Borrowing tech-
niques from the field of image recognition, we showed that
artificial neural networks can efficiently be trained to pre-
dict the detectability of GW signals emitted by compact
binary coalescences. Our predictions appear to be solid
both qualitatively and quantitatively. We showed that the
inclusion of spins, higher-order modes, and multi-detector
SNR calculations results in higher detection probabil-
ity, suggesting that current detection-rate estimates that
do not rely on actual systematic injection studies might
be slightly overestimated. Such mismodeling appears to
be more relevant in the corner of the parameter space
characterized by high and unequal masses.

Compared to raw evaluations of the SNR, our approach
allows for a computational speed-up of more than a fac-
tor 1000 (evaluated on a standard off-the-shelf laptop).
If a similar number of Monte Carlo samples is used to
marginalize over �, this implies that our tool (in its
present form) might allow the full inclusions of spins,
higher-order modes, and network SNRs in V T estimates
at the same computational cost of the currently employed
semi-analytic average.

We hope our work might be useful to both GW
data analysts and astrophysicists. Researches develop-
ing codes of binary-star and cluster evolution to pre-
dict GW events will be able to use our neural network
to efficiently filter their synthetic catalogs based on the
LIGO/Virgo detectability. Our models are publicly avail-
able at github.com/dgerosa/pdetclassifier [28], where we
provide trained networks and training/validation samples
for the three cases described in this paper, as well as
additional outputs calibrated on the LIGO/Virgo per-
formances during their observing runs O1, O2, O3, and
forecasted O4. We hope this will facilitate the immediate
adoption of our approach.

Our neural-network classifiers are trained to learn a
single yes/no variable (“is this input binary detectable?”).
An alternative strategy to estimate GW selection biases

DG+ 2020
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