

Synergies between fuel, powertrain & aftertreatment systems

Dr J. Martin Herreros School of Engineering University of Birmingham 15th September 2020

10th BEAR PGR Conference, 2020

1.Motivation

- Challenges
- Aim

2. Synergies Fuel, Powertrain and Aftertreatment

3. Particles characterization

4.Next steps

Academic/Research positions		
Position	University	Date
PhD in Mechanical Engineering	University of Castilla-La Mancha	2006-2009
Visiting Researcher	Penn State University	2007
Post-doctoral Research Fellow	University of Birmingham	2010-2014
Lecturer in Mechanical Engineering	Nebrija University	2014
Lecturer in Vehicle Systems	Coventry University	2015-2017
Lecturer in Mechanical Engineering	University of Birmingham	2017-currently

Future Power Systems. Vehicle Research Technology Group Dept. of Mechanical Engineering, School of Engineering College of Engineering and Physical Sciences

	Non renewable fuels (Scarcity)
Challenges <	GHG emissions (CO ₂)
	Other pollutants emissions

Innovate UK

Gaseous and Particulate Emissions

DRIFT Catalyst Characterisation

H₂ Analysis HSense (V&F)

Diesel and GDI Engines

Source: European Commission, Climate Action.

UK air pollution from transport, 1990 - 2013

Motivation. Aim

Develop existing and new areas of excellence and high impact research in mobility and transportation underpinned by major stakeholder and industrial collaborations

Alternative Fuels and Blend Components

Advanced combustion & alternative powertrains

Aftertreatment system

Fuel, Powertrain and After-treatment technologies work together to beat energetic and environmental challenges Synergies Fuel, Powertrain and After-treatment technologies

- I Lefort, J.M. Herreros, A. Tsolakis. Reduction of Low Temperature Engine Pollutants by understanding the Exhaust Species Interactions in a Diesel Oxidation Catalyst. Environmental Science and Technology 48(4) 2361-2367, 2014.
- D. Fennell, J.M. Herreros, A. Tsolakis. Improving gasoline engine efficiency, emissions and PM with hydrogen from exhaust gas fuel reforming. International Journal of Hydrogen Energy 39 5153-5162, 2014.
- M. Bogarra, J.M. Herreros, A. Tsolakis, A. York, P. Millington. Reformate exhaust gas recirculation (REGR). Effect on PM, Soot Oxidation and Three Way Catalyst (TWC) Performance in Gasoline Direct Injection (GDI) Engines. SAE Int. J. Engines 9 (1), 2016.

Fuel (biodiesel) and aftertreatment (diesel oxidation catalyst, DOC)

M.A. Fayad, D. Fernández-Rodríguez, J.M. Herreros, F.J. Martos, M. Lapuerta, A. Tsolakis. Interactions Between Aftertreatment Systems Architecture and Combustion of Oxygenated Fuels for Improved Low Temperature Catalysts Activity. Fuel, 229, 189-197, 2018.

Fuel (Castor oil biodiesel) and aftertreatment (diesel particulate filter, DPF)

Sukjit, Herreros, Piaszyk, Tsolakis. Finding synergies in fuels properties for the design of renewable fuels – Hydroxilated biodiesel effects on butanol-diesel blends. Environmental Science and Technology, 47, 3535-3542, 2013.

Bogarra, M., Herreros, J.M., Tsolakis, A., York, A., and Millington, P. Study of particulate matter and gaseous emissions in gasoline direct injection engine using on-board exhaust gas fuel reforming. Applied Energy, 180, 2016, 245-255.

- W. Wang, J.M. Herreros, A. Tsolakis, A.P.E. York. Hydrogen production via ammonia on-board exhaust gas reforming and its utilisation in diesel combustion and emission control. International Journal of Hydrogen Energy, 38, 9907-9917, 2013.
- S.Sittichompoo, H.Nozari, J.M.Herreros, N.Serhan, J.A.M.da Silva, A.P.E.York, P.Millington, A.Tsolakis. Exhaust energy recovery via catalytic ammonia decomposition to hydrogen for low carbon clean vehicles. Fuel, 2020.

W. Wang, J.M. Herreros, A. Tsolakis, A.P.E. York. Hydrogen production via ammonia on-board exhaust gas reforming and its utilisation in diesel combustion and emission control. International Journal of Hydrogen Energy, 38, 9907-9917, 2013.

Morphological and nanostructural characteristics

Transmission Electron microscopy (TEM)

PARTICULATE MATTER CHARACTERISTICS Impact on atmosphere residence time,

lung deposition and regeneration strategies for filters

High Resolution TEM X-ray diffraction Raman

Soot oxidation patterns

Particulate size distribution

Scanning Mobility Particle Sizer Electric Low Pressure Impactor Differential mobility spectrometer

Synergetic effects fuel/powertrain/aftertreatment. Fuels from waste, zero carbon technologies and electrified vehicles.

➢ Non exhaust (oil, tyres, brakes, road) and non-combustion oil derived emissions understanding the impact of vehicle electrification and autonomy

➢ Investigate formation mechanisms particle emissions from manufacturing processes (3-D printers)

Next steps

Liquid Air/Nitrogen powertrain

Return Stroke

Top Dead Centre

Source: Clean Cold Power

Power Stroke

Bottom Dead Centre

Next steps

Non-exhaust emissions

Source: UK PM_{2.5} emissions from road transport. Air Quality Expert Group. Non-exhaust emissions from road traffic. DEFRA, Scottish Government, Welsh Government and DOE in Northern Ireland. 2019.

Next steps

3D printing emissions

S. Sittichompoo, S. Kanagalingam, L.E.J. Thomas-Seale, A. Tsolakis, J.M. Herreros. Characterization of particle emission from thermoplastic additive manufacturing. Atmospheric Environment, 2020.

Thank you

