Sniffing Wear Patterns: AE signals as a diagnostic tool for joint wear
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Background
J Acoustic Emission (AE) testing detects the onset and

progression of mechanical flaws.
d AE has proven useful in detecting tribological characteristics of
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mechanical systems. UHmwp T gystem
It has recently emerged as a diagnostic tool for providing a EE;ZI’\—/T Rmmmgnml
tribological assessment of human joints and orthopaedic
implants. | I
. AE has potential as a tool for diagnosing joint pathologies such
as osteoarthritis and implant failure.
d Research Question: How can AE signals be analysed to
differentiate between wear mechanisms?
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Methodology

Acquisition of AE signals: Supervised Classification of AE signals:

. Two simulated wear mechanisms: adhesive and [ AE feature extraction using principal
abrasive wear. component analysis (PCA)

. Acquisition of AE signals using bio-tribo-acoustic d Labelling & merging of AE hits from adhesive
testing under controlled joint conditions. and abrasive wear tests.

. Materials: PEEK rod and Stainless Steel plate.
. Classification of AE signals using supervised
learning.

Ratio of training and test data: 85% to 15%
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Logistic regression model: P(X) = T (@rT h)

K-nearest neighbours classifier (KNN)
Back Propagation(BP) neural network using the

resilient backpropagation (Rprop) algorithm.
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Experiment Layout lllustration of a three-layer BP neural network
Results Conclusion
o Classification accuracy summary ABP neural network has the best
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