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¢ 1. Demand of CO, emission reduction and energy security in China

CO, Emissions Projections for 2019 CO2 Emissions reduction mission by 2030
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@ 1. Demand of CO, emission reduction and energy security in China

Energy mix in China
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This graph shows the fuel mix for all energy supply, including energy
used for electricity generation, heating, cooking, and transport fuels.
Fossil fuels (oil, coal and gas) still make up 87% of China’s energy mix,
which is around the G20 average (82%).

Source: Enerdata 2019

Fossil fuels still make up 87% of China’s energy mix
(including

power, heat, transport fuels, etc), with coal being the
predominant resource.

[1] Brown to Green Report 2019 China

Solar, wind, geothermal and biomass development
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Solar, wind and biomass account for
only 2.6% of China’s energy supply -
the G20 average is 6%. In the last five
years, the share of these sources in
total energy supply has risen by around
136%, more than the G20 average
(+29%, 2013-2018). Bioenergy (for
electricity, biofuels for transportation
and heat) makes up the largest share.
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Rating of share in TPES compared to other G20 countries*

Rating current level (2018)
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Solar, wind and biomass account for only 2.6% of China‘s
energy supply —the G20 average is 6%.

Rating trend (2013-2018)

Source: own evaluation



@ 1. Demand of CO2 emission reduction and energy security in China

Transportation energy mix in China

Transport energy mix
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Electricity and biofuels make up only
4% of the energy mix in transport.

Power mix in China
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China is increasingly producing power from

renewables, mostly from large hydropower.
Renewables make up 26% of the power mix - close

to the G20 average. However, coal power is still
increasing in absolute terms and makes up 67% of the
power mix — one of the highest levels in the G20.
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Coal power is still increasing in absolute terms and makes up 67% of
the power mix — one of the highest levels in the G20



& 2. Prospect of automotive powertrain technology roadmap

Different automotive powertrain configurations
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[1] Electric vehicles in Europe: gearing up for a new phase?
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@ 2. Prospect of automotive powertrain technology roadmap
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Electrification and hybridization decouples engine operation from vehicle power demand which enable the engine operate under high efficiency regime.



& 2. Prospect of automotive powertrain technology roadmap
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Global portfolio of technologies for PLDVs in the 2DS
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accounting for nearly three-quarters of new vehicle sales in 2050.

Figure 13 AVL Forecast of Possible Powertrain Technology Split ®

Future trend of automotive powertrain: Power diversity & electrification

[1] Energy Technology Perspectives 2015.

[2] Tian J, BinZ, W W, A K, A A, MK, et al. Shell’s View on Future Mobility Fuels: A patchwork, or “Mosaic” approach will be needed to address societies energy needs. Journal of Automotive Safety and
Energy 2020;11(1):17-35



& 2. Prospect of automotive powertrain technology roadmap

Powertrain roadmap of light-duty vehicle
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Battery electric vehicle, plug-in hybrid vehicle, gasoline engine hybrid vehicle will dominate the light duty vehicle market.

[1] The EMOB calculator



& 2. Prospect of automotive powertrain technology roadmap

Powertrain roadmap of heavy-duty vehicle

Heavy duty truck ICE HEV ' BEV/Fuel cell

" Garbage truck ICE HEV ' BEV/Fuel cell
100% o o 100% 1%
1% 1% 3%
5%
98% - 20%
5%
35%
96% 80% 35% °
70%
s 94%
S S 60%
[=2] ~
S 92% ° S
S 99% 99% 2 50%
S £ 99%
£ 909 8 °
90% S 0% 50%
88% 30% 62%
90%
86% 20%
10%
84% 0 15%
2020 2025 2030 0%
2020 2025 2030
Concrete mixer ICE HEV BEV/Fuel cell .
100% 1% City bus ICE HEV ' BEV/Fuel cell
10% 100% 2%
90%
’ 90% 14%
80%
50% 80% 42%
70%
A 70%
o L
& 75% [ | 60%
£50% 99% i
3 | > 50% 100%
§40% [ | G \ 26%
— 0% 84%
30%
50% 30%
20%
. 20%
10% 15% 32%
0,
0% 10%
2020 2025 2030
0% 0%

Diesel engine hybrid vehicle, fuel cell electric vehicle will dominate thé"heavy-tiuty vetiitle market.
[1] Guangxi Yuchai Machinery Group Co., Ltd.



Prospect of automotive powertrain technology roadmap

Fuel diversity and uses
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[1] TOYOTA's Electrification Roadmap.
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Strengths and limitations of today’s powertrain technologies
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Mild hybrids (MHEVSs) are the entry point to electric powertrain
technologies. A low-voltage (LV) system (mostly 48V) enables the use of
efficient electrification elements, such as start-stop,

regenerative braking, and some level of power assist the ICE.

Hybrid electric vehicles (HEVS) are designed to optimize the use of the
combustion engine in interplay with a small, low-range, HV electric
powertrain, e.g., for low-speed cruising or

power boost.

Plug-in hybrid electric vehicles (PHEVS) have a similar architecture to
HEVs, yet they have a significantly larger battery, a more powerful electric
engine, and can be recharged by plugging into an external source of power.
They are designed for a significant share of pure electric driving.

Battery electric vehicles (BEVSs) replace the combustion engine with an
electric engine.

Fuel cell electric vehicles (FCEVs) fundamentally function like BEVs but
store energy as a pressured hydrogen gas and produce electricity from that
energy with a fuel cell. The energy density of storing hydrogen is, both by
volume and weight, significantly higher than in batteries. In addition,
fueling speed can be in the order of a few minutes.

[1] Reboost: A Comprehensive View On The Changing Powertrain Component Market And How Suppliers Can Succeed



¢ Prospect of automotive powertrain technology roadmap
Energy efficiency of IC engine
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[1] Trattner A, Pertl P, Schmidt SP, Sato T. Novel Range Extender Concepts for 2025 with Regard to Small Engine Technologies. 2011.



2. Prospect of automotive powertrain technology roadmap

Future Powertrain Technolo
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¢ 3. Paths forward to carbon neutral combustion

Carbon neutral fuels (eco-fuels, from renewable electricity and CO,) & tailor-made IC engine for hybrid vehicle

Closing the Carbon Cycle
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FIGURE 10.3 A representative route to achieve carbon-neutral hydrocarbon fuels by cycling
CO, and employing renewable H, and energy sources.”'®

Electrolysis of H,0

[1] Carbon Dioxide Utilisation-Closing the Carbon Cycle.

a) SIT\]IG

CH,

-H,0
*Hy & RWGS
+ Hz -H20

HCOOH —> Fuel cells

Fg : CH“ DR U
\ + H2 bioroutes A

Hydrogen storage/transport

Chemical routes :
e

(catalytic)

Turning carbon dioxide into eco-fuel

Fuel cells
- Hzo

CH3OH+CH 54 CH3OCHz .

Gasoline _
CZ C3 olefins 3
-[CHzln

>C1 alcohols A
-[CH;],- = = Diesel

>C1 hydrocarbons

g Co+H2

||||||||||||||||||||||||||||||||||||||||

----= Electrochemical routes

&7 i reaees

Solar thermal routes

FT : Fischer Tropsch (FT* modified FT)
DR: Dry reforming

RWGS: Reverse water gas shift

SR: Sabatier reaction

CO2 conversion routes to incorporate renewable energy in the chemical and energy chains

[2] Centi G, Quadrelli EA, Perathoner S. Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy & Environmental Science 2013;6(6).



¢ 3. Paths forward to carbon neutral combustion

Carbon neutral fuels (eco-fuels, from plastic waste) & tailor-made IC engine for hybrid vehicle

Thermochemical recycling techniques Transform syngas into liquid fuel
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& 4. Prospect of internal combustion engine and fuels

—A global shift from dirty to clean fuel—
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[1] Clean Combustion Technologies that Valorize CO2, KAUST



¢ 4. Prospect of internal combustion engine and fuels

IC engine combustion modes
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¢ 4. Prospect of internal combustion engine and fuels

Property-oriented fuel design

. Target orientation fuel design and )
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Innovative fuel formulation is required for advanced
combustion modes, but the rules is still less
understanding.

Tailor-made fuels to co-optimize fuels and engines

[1] LiR, Liu Z, Han Y, Cai Y, Wang X, Zheng J, et al. Target-Oriented Fuel Design for the Homogeneous Charge Autoignition Combustion Mode: A Case Study of a n-Heptane—PODE3—-Ethanol
Mixture. 2. Identification of a Functional Configuration of Fuel Components. Energy & Fuels 2018;33(1):31-49.



Molecular structure generator: MOLGEN
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4. Prospect of internal combustion engine and fuels

Top 10 blendstocks
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[1] Top Ten Blendstocks for Turbocharged gasoline engine. https://wwwostigov/servlets/purl/1567705 2019.
[2] Wagner R, Gaspar D, Bryan P, McCormick R. Co-Optimization of Fuels & Engines FY19 Year in Review. 2019;https://www.energy.gov/sites/prod/files/2020/06/f75/beto-co-optima-
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Chemical structures of MCCI biofuel candidates meeting the property
requirements for blending into conventional diesel. Figure by Gina Fioroni, NREL
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(prenol)

NS

CAS #
Formula
RON

bRON at 20%
MON

S

HoV (kl/kg)
LHV (MJkg)
YSI

PMI

St (298K; 1 bar; cm/s)

Water sol. @ 25 °C (g/L)
Catalyst Light-OffI Tso

30% prenol 974  84.0

3-Methyl-2-buten-1-ol

OH

556-82-1
CsHyOH
93.

120

74

19

512

34.0

47

0.93

Not
measured

46.9 g/L
Not

measured
Toy  Not
measured
LSPI propensity Low
RON MON
Base BOB 903 84.7
10% prenol  94.0 85.5
20% prenol  96.7 849

Hyperboost impact for octane number

New
Hyperboosting
Phenomenon

Conventional
Octane
Blending
Behavior

Unexplored
Space
for High
Performance
Biofuels

Fuel Octane

0% % Blended Into Base Fuel 100%

Schematic of fuel octane vs. percentage of blendstock blended into base fuel, showing prenol’s hyper-
boosting behavior pushing the blended fuel's RON beyond the level enabled by typical synergistic
blending. Figure by Anthe George and Eric Monroe, SNL
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[1] Top Ten Blendstocks for Turbocharged gasoline engine. https://wwwostigov/servlets/purl/1567705 2019.
[2] Farrell J, Wagner R, Gaspar D, Moen C. Co-Optimization of Fuels & Engines FY18 Year in Review. 2018;https://www.energy.gov/sites/prod/files/2019/06/f64/Co-Optima_YIR2018_FINAL_LOWRES%20190619_0.pdf.
[3] Monroe E, Gladden J, Albrecht KO, Bays JT, McCormick R, Davis RW, et al. Discovery of novel octane hyperboosting phenomenon in prenol biofuel/gasoline blends. Fuel 2019;239:1143-8.
[4] De Bruycker R, Herbinet O, Carstensen H-H, Battin-Leclerc F, Van Geem KM. Understanding the reactivity of unsaturated alcohols: Experimental and kinetic modeling study of the pyrolysis and oxidation of 3-methyl-2-butenol and 3-methyl-3-
butenol. Combustion and Flame 2016;171:237-51.
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Fig. 7. Reaction path analysis for the decomposition of prenol. Operating conditions: Fy =4.06 10~° m*s~!, T =2'5, Xyena0 =0.008, ¢ = 1.0, T=700 K (blue and italic) and
900 K (red and underlined). Percentages on a reaction path represent the reaction rate relative to the total consumption rate of the reacting species, Species with a shaded
background have been detected experimentally, { For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.,)
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“IC engines will obtain new development opportunity

by collaborating with electrification and hybridization”
-Prof. Shijin Shual, Tsinghua University

“Fossit fuels will have to underwrite a

transition to other sources of energy”
-Prof. Tad Patzek, KAUST
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5. Relation between Intelligent connected vehicles (ICV) and automated driving (AD)

Six Levels of Automated Driving (AD)

Driver Automated Vehicle
No Automation Driver Assistance Partial Automation  Conditional Automation High Automation Full Automation
The driver constantly The system can take The system can take The system can take The driver can hand

performs all aspects of
the dynamic driving
tasks. No systems
intervene,

©

The driver must
constantly monitor the
drive

over steering or over both steeringand ~ over both steeringand over the entire driving

acceleration/decelerati  acceleration/decelerati  acceleration/decelerati  task to the systemin a
defined use case.

on. The driver must on in a defined use onin a defined use
continuously carry out case. case. Itis capable of
the other. recognizing its limits

and notifying the driver.

The driver must
constantly monitor the
drive. He must be ready
to resume full control
immediatel

Autonomous will be Connected, automated vehicle may finally

stop at
vehicle,

Level 4 of particular application scenarios, but the
road, infrastructure, pedestrian information will benefit

the Intelligent Transport Management System.

1.
2.

https://www.trustvehicle.eu/the-road-to-driverless-vehicles/
http://css.umich.edu/factsheets/autonomous-vehicles-factsheet

AUTONOMOUS VEHICLE TECHNOLOGIES

Global Positioning Systems (GPS): Locate

the vehicle by using satellites to triangulate its
position. Although GPS has improved since the
2000s, it is only accurate within several meters.

Ultrasonic sensors: Provide short

distance dara thar are typically used in
parking assistance systems and backup
warning systems.

Prebuilt Maps: Sometimes utilized to
correct inaccurate positioning due to
errors that can occur when using GPS
and INS. Given the constraints of
mapping every road and drivable
surface, relying on maps limits the
routes an AV can take.
Dedicated Short-Range Communication
(DSRC): Used in Vehicle to Vehicle (V2V)
and Vehicle to Infrastructure (V2I) systems to
send and receive critical data such as road
conditions, congestion, crashes, and possible
rerouting. DSRC enables platooning, a train
of vehicles that collectivelv travel roeether.

Emergency Braking
Pedestrian Detection
Collision Avoidance __
Eww\mﬂ“.‘p’“‘
Mapping

M Long-Range Radar
W LIDAR

W Camera
W Short-/Medium-Range Radar

Light Detection and Ranging (LIDAR): A 360-degree

between obstacles and the sensor.

/ sensor that uses light beams to determine the distance

L ; : T o
C Frequently used pensive tec Vs
however, complex algorithms are necessary to

interpret the image data collected.

Radio Detection and Ranging
(RADAR): A sensor that uses radio
waves to determine the distance
between obstacles and the sensor.

Infrared Sensors: Allow for the
detection of lane markings,
Inertial Navigation Systems (INS): pedestrians, and bicycles that are
hard for other sensors to detect in
low lighting and certain
environmental conditions.

Typically used in combination with
GPS to improve accuracy. INS uses
gyroscopes and accelerometers to
determine vehicle position,
orientation, and velocity.

ot
Detection

" Environment
__Mapping
Rear

Collision

Warning


https://www.trustvehicle.eu/the-road-to-driverless-vehicles/
http://css.umich.edu/factsheets/autonomous-vehicles-factsheet

4 - - - - - - [1]https://www.tomtom.
@ 6. The role of high-definition map for self-driving vehicles com/oroducts/hd-map/

Extended sensor range

Sensor-agnostic localization layers

Gives context to the vehicle’s surroundings . |
& Works with any sensor layout to enhance

acting as a safety net that sees road signs, e . .
. positioning with localization map layers
lights and around corners.

Improved sensor perception Safer path planning

O

‘J ‘ R %

Locate and identify signs, lights, poles and : L : \
other objects to help self-driving vehicles Helps vehicles plan a path along
make sense of their surroundings any route and execute it safely






