

Lagrangian Recurrences: A Novel Method for Mixing Description

Chiya Savari

Research Fellow, School of Chemical Engineering University of Birmingham

e-mail: c.savari@bham.ac.uk

Outline

- □ Mixing
- □ Experimental
- □ Data Analysis
- □ Results

Mixing

- Physical process which aims at reducing nonuniformities
- □ Fine chemicals, pharmaceuticals, personal/home care products, paper and pulp, polymers, food
- Traditional mixing performance indicators are generally based on Eulerian data
- □ Mixing is intrinsically a Lagrangian process
- Unique technique of positron emission particle tracking (PEPT)
- Compared with leading optical laser techniques (e.g. LDV, PIV)

Experimental Work

H = T

X = 0-40 wt%

d_{bead} = 2.85-3.30 mm

N = N_j

COLLEGE OF
ENGINEERING AND
PHYSICAL SCIENCES

Data Analysis

COLLEGE OF ENGINEERING AND PHYSICAL SCIENCES

Recurrence Matrix

- Distances between every points of trajectory can be calculated.
- For a trajectory of n data points, a matrix (n × n) named distance matric (DM) can be computed.
- Euclidean distance is the most common use of distance

$$dist(a,b) = \sqrt{(x_a - x_b)^2 + (y_a - y_b)^2 + (z_a - z_b)^2}$$

Recurrence Plot (Eckmann et al., 1987)

$$R_{i,j} = \begin{cases} 1 : \vec{x}_i \approx \vec{x}_j \\ 0 : \vec{x}_i \neq \vec{x}_j \end{cases} \qquad i, j = 1, \dots, N$$

$$i, j = 1, \dots, N$$

$$R_{i,j}(\varepsilon) = \Theta(\varepsilon - \|\vec{x}_i - \vec{x}_j\|)$$
 $i, j = 1, \dots, N$

$$i, j = 1, \dots, N$$

RPs of Different Systems

Periodic System

Arbitrary System

Lorenz System

Recurrence Quantification Analysis (RQA)

Quantifying the small scale structures for measuring the complexity of RPs

$$ENT = -\sum_{l=l_{min}}^{N} p(l) Ln p(l)$$

$$p(l) = \frac{P(l)}{N_l}$$

 N_l = number of diagonal lines

$$l_{\min} = 2$$

Entropy Calculation for Each Data Point

Azimuthally-Averaged Radial-Axial Maps of Entropy

Pitch Blade Turbine Impeller Down Pumping Mode, (PBT-D)

Axially-Averaged Radial-Azimuthal Maps of Entropy

Pitch Blade Turbine Impeller Down Pumping Mode, (PBT-D)

Entropy Maps of Different Impellers

Entropy Maps of Different Impellers

Global Entropy

n, number of cells

Global Entropies, Single Phase Flow

Conclusions

- □ A new methodology based on the windowing recurrence quantification analysis has been developed for studying the local and global mixing performance in a batch stirred vessel.
- Global mixing index increases by increase in rotational speed of impeller.
- Global mixing index shows the order of the mixing rate under a constant impeller rotational speed becomes: RTD > PBT-D > PBT-U.
- Detailed information is obtained on global as well as local mixedness, allowing the identification of well-mixed and poorly-mixed cells.

Thanks for your attention

