

BEAR Launch 2013 24th June 2013

Atomistic Simulation of Nuclear Materials

Dr Mark S D Read School of Chemistry

Nuclear Education and Research Centre www.chem.bham.ac.uk

Metallurgy and Materials

Modelling: Importance to Nuclear Industry

Atomistic Simulation: Materials Challenges

- Current Fission Reactors:
 - Nuclear Fuel
 - Performance and ageing phenomena prediction.
 - UO₂ / MOX / Thoria(?)
 - Radiation damage
 - High Level Waste Encapsulation and Immobilization
 - Predicting solution of interstitials and radioactive dopant ions.
 - Predicting stability of ions and migration energies to surfaces/grain boundaries and radiation damage of host matrix
- Future Fusion Reactors:
 - New materials
 - Able to withstand higher
 - temperature and neutron fluxes

Research Interests

Fuel Performance

Behaviour under irradiation

Safe, controlled and predictable 'heat source'

Calculate intrinsic /extrinsic defect energies to predict transport of species to grain boundaries and fuel-clad gap.

> Modelling of fission 'gas bubbles'

Nuclear Waste

'Safe and Secure' immobilization of high level radioactive waste in a form suitable for final disposal

Simulations predict properties of candidate ceramic compositions as host matrices, tolerance to radiation damage and radionuclide transport characteristics

Sensors

Predicting formation energies of defects causing optical response

Fundamental understanding of neutron radiation induced lattice effects

Relate to mode of operation of 'sensor'

Application and Relevance

Overview

Modelling augments experimental characterization NOT replace it!

Can be thought of as an additional analytical technique.

900 MHz, 21.2 T NMR

Modelling scales and regimes

Nuclear Fuel

Ceramic Fuels

Advanced Gas Reactor (AGR) Moderator: Graphite

Fuel: UO_2 with 2.5% ²³⁵U enrichmentCoolant: CO_2 (very weak moderator)

A second-generation UK-designed nuclear reactor employing vertical fuel channel design

Pressurized Water Reactor (PWR) Moderator: light water $-H_2O$

Simulation of Uranium Dioxide

Simulation Methodology

Potential Models

Atomistic approach to modelling crystal structure and properties involves:

Interatomic potential functions simulating the forces acting between ions.

Interatomic pair potentials can be written as:

Classical Born model framework of ionic interactions:

A, ρ and C are variable parameters Empirically fitted to experiment

Shell Model (polarization)

Empirical Fitting of U – O Potential

Employing GULP to Fit Parameters Simultaneously

Parametric Study – U - O

C set to 0 A and r varied.

Solutions for $\delta = 0$ identified by red diamonds.

Programme Drivers and Strategy

Robust Simulation of Actinide Oxide

Atomistic Regime

Robust description of Bulk Lattice

Surfaces Nanoparticles

Surface defects

Extended defects

Higher Order Surfaces

Lowest energy shift per Miller Index
index h k l Surface_Energy

Index	1	1	1	1.11561	Index	1	0	4	1.90954
Index	4	-5	5	1.19276	Index	2	3	3	1.91579
Index	2	-3	3	1.24479	Index	1	4	0	1.92097
Index	3	-5	5	1.27550	Index	1	1	3	1.92818
Index	6	5	-6	1.34829	Index	1	-3	-6	1.92842
Index	2	-5	-5	1.37917	Index	1	1	-5	1.97931
Index	3	4	5	1.38527	Index	0	1	4	1.99825
Index	-6	6	5	1.38794	Index	1	1	-3	2.00320
Index	6	-6	5	1.40633	Index	1	5	1	2.00526
Index	-6	5	6	1.40881	Index	1	0	-6	2.03147
Index	1	3	3	1.41022	Index	1	1	6	2.03747
Index	3	5	-5	1.47694	Index	1	5	-1	2.05252
Index	4	-4	3	1.49566	Index	1	0	-4	2.05506
Index	1	5	5	1.50669	Index	1	2	6	2.07281
Index	3	-4	4	1.51483	Index	0	1	-4	2.07560
Index	5	3	-5	1.60875	Index	0	-6	1	2.07736
Index	1	1	0	1.62201	Index	0	0	1	2.09124
Index	1	4	-5	1.63955	Index	4	0	1	2.09575
Index	1	-4	-5	1.63956	Index	0	-4	1	2.11127
Index	1	5	6	1.64315	Index	-6	1	1	2.11315
Index	1	-2	-3	1.64449	Index	1	-1	-4	2.16457
Index	4	5	-5	1.65310	Index	1	-5	0	2.17623
Index	1	-2	1	1.65846	Index	1	-1	-5	2.21188
Index	0	1	-1	1.67691	Index	1	1	5	2.21805
Index	2	3	5	1.69731	Index	1	0	-5	2.22785
Index	1	6	6	1.70165	Index	0	-5	1	2.29404
Index	1	4	6	1.70968	Index	-5	0	1	2.31452
Index	1	-4	-4	1.71434	Index	1	-6	0	2.33259
Index	5	-6	6	1.71905	Index	0	1	2	2.33554
Index	1	3	5	1.72907	Index	0	6	1	2.36212
Index	1	2	2	1.75407	Index	-5	1	0	2.36243
Index	1	2	4	1.80652	Index	0	1	-5	2.37786
Index	1	1	2	1.82508	Index	1	6	0	2.38650
Index	1	-4	0	1.86597	Index	-6	0	1	2.38789
Index	1	2	5	1.87443	Index	1	0	6	2.39233
Index	1	5	-2	1.87493	Index	0	1	-6	2.39504
					Index	-6	1	0	2.40009
					Index	0	1	3	2.40689
					Index	0	1	6	2.41067
					Index	6	0	1	2.43899

Willis Cluster

Investigating the Defect Chemistry

Cluster Defects

Binding Energy = $\{V_{U}^{\prime\prime\prime\prime\prime}: 2V_{O}^{\bullet\bullet}\}^{\times} - V_{U}^{\prime\prime\prime\prime\prime} + 2V_{O}^{\bullet\bullet}$

Simulating MOX fuel

MOX $\overline{25\%}$ (U_{0.75}Pu_{0.25}O₂)

'Mean Field Approach'

UUIonic radius = 0.97 ÅPuIonic radius = 0.93 Å

Supercell

Intrinsic disorder

Cerium brannerite

M.C. Stennett, C.L. Freeman, A.S. Gandy, N.C. Hyatt, Journal of Solid State Chemistry 192 (2012) 172–178

Modelling Radiation Damage

Unstable Pu nucleus within MOX fuel decays principally by α decay

2550 Frenkel Pairs

HPC Resource

Birmingham Environment for Academic Research

Blue BEAR

Theoretical peak performance of the compute nodes =

848 (cores) * 2.2 (GHz) * 8 (floating point operations/cycle) = 15 TFlop/s

150 TB of user disc space with a sophisticated cluster filesystem.

HPC service was completely replaced in December 2012. currently based an on an IBM iDataplex HPC cluster with 800 Sandy Bridge based compute cores and other facilities such as large memory servers and a GPU-assisted compute node

HPC Resource

MidPlus Regional HPC Centre

A centre of excellence for computational science, engineering and mathematics

Easy access to e-Infrastructure, research and collaboration for business

MidPlus is a collaborative partnership between four of the UK's leading universities:

- University of Warwick
- University of Birmingham
- University of Nottingham
- Queen Mary, University of London.

Partnership brings together academic expertise and leading-edge facilities for computing capability and capacity, with an aim to facilitate the rapid realisation of modern computational research methods for business and industry.

This regional HPC centre complements the BEAR facilities and adds additional resources for demands that cannot be met locally.

HPC Resource

HECTOR: UK National Supercomputing Service

You are here: HECToR »

Google" Custom Search

Search

Breakthrough in Fluid Mixing: Fractal-Generated Turbulent Flows

The first ever successful simulations of turbulence generated by fractal grids have been performed on HECToR in 2008 and 2009 by scientists at the Imperial College.

Read more

HECTOR is the UK's high-end computing resource, funded by the UK Research Councils. It is available for use by academia and industry in the UK and Europe.

- A world-class supercomputer located and run in the UK.
- An invaluable resource for researchers who study problems with a global impact.
- Part of the <u>PRACE</u> initiative giving leading scientific users access to a European pool of supercomputers.

Examples of HECToR use...

Learn more about HECToR

More information on the various aspects of the HECTOR Facility that are centred around supporting the Cray XE6 supercomputer.

HECTOR Information...

How can HECToR help me?

Information on how you can make use of HECTOR. What software is available on the system and how to go about getting access to the Facility.

Accessing HECToR...

HECToR User Site

Information for current HECToR users. Service status information, support, documentation and details on training courses.

Using HECToR...

Acknowledgements

Collaborators

Dr Rob Jackson

Prof. Steve Parker (METADISE)

Prof. Richard Catlow FRS

Birmingham Environment for Academic Research

The Midlands Energy Consortium

UNIVERSITY^{OF} BIRMINGHAM

The University of Nottingham